67 research outputs found

    From Au-Thiolate Chains to Thioether Sierpiński Triangles: The Versatile Surface Chemistry of 1,3,5-Tris(4-Mercaptophenyl)Benzene on Au(111)

    Get PDF
    Self-assembly of 1,3,5-tris(4-mercaptophenyl)benzene (TMB) – a three-fold symmetric, thiol functionalized aromatic molecule – was studied on Au(111) with the aim to realize extended Au-thiolate linked molecular architectures. The focus lay on resolving thermally activated structural and chemical changes by a combination of microscopy and spectroscopy. Thereby Scanning Tunneling Microscopy provided submolecularly resolved structural information, while the chemical state of sulfur was assessed by X-ray Photoelectron Spectroscopy. Directly after room temperature deposition only less well ordered structures were observed. Mild annealing promoted the first structural transition into ordered molecular chains, partly organized in homochiral molecular braids. Further annealing led to self-similar Sierpiński triangles, while annealing at even higher temperatures again resulted in mostly disordered structures. Both the irregular aggregates observed at room temperature and the chains were identified as metal-organic assemblies, whereby two out of the three intermolecular binding motifs are energetically equivalent according to Density Functional Theory simulations. The emergence of Sierpiński triangles is driven by a chemical transformation, i.e. the conversion of coordinative Au-thiolate to covalent thioether linkages, and can be further understood by Monte Carlo simulations. The great structural variance of TMB on Au(111) can on one hand be explained by the energetic equivalence of two binding motifs. On the other hand, the unexpected chemical transition even enhances the structural variance and results in thiol-derived covalent molecular architectures

    Determination of normal ranges of regional and global phase parameters using gated myocardial perfusion imaging with Cedars-Sinai's QGS software

    Get PDF
    Introduction: Myocardial perfusion imaging using gated SPECT and phase analysis is an effective tool in evaluation of mechanical dyssynchrony. The purpose of this study was to determine the normal ranges of global and regional phase parameters. Methods: A total of 100 patients with normal resting and stress electrocardiograms, low pretest likelihood for coronary artery disease and a normal gated MPI study were recruited in the study. All of the patients underwent a standard 2-day stress/rest gated MPI study according to standard protocols. The reconstructed images were further analyzed by Cedar-Sinai's quantitative gated SPECT. Left ventricular phase indices were provided both globally and regionally for both genders and the normal interquartile range of these parameters were defined. Results: Normal ranges of global and wall-based regional phase parameters are presented both in unisex and in gender-specific formats. Both global (P<0.001) and major LV regional phase parameters (P<0.05) are found to be significantly different between the two genders with a significant positive association between end-diastolic volume with phase global indices (P<0.01). There is also more synchronized phase distribution in phase analysis results of post-exercise gated MPI as compared to the phase analysis of the same patients at resting state. Conclusion: Normal ranges of phase indices are defined in this article by using Cedar-Sinai's QGS software. As normal ranges of phase dyssynchrony parameters are gender-specific and are related to LV volume, stress or resting state and stress type, the need for careful incorporation of these data is indicated in interpretation of phase studies. © 2018 Tehran University of Medical Sciences. All rights reserved

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers

    Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia

    Get PDF
    Background: We examined the safety and efficacy of a treatment protocol containing Favipiravir for the treatment of SARS-CoV-2. Methods: We did a multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. Patients with typical ground glass appearance on chest computerized tomography scan (CT scan) and oxygen saturation (SpO2) of less than 93 were enrolled. They were randomly allocated into Favipiravir (1.6 gr loading, 1.8 gr daily) and Lopinavir/Ritonavir (800/200 mg daily) treatment regimens in addition to standard care. In-hospital mortality, ICU admission, intubation, time to clinical recovery, changes in daily SpO2 after 5 min discontinuation of supplemental oxygen, and length of hospital stay were quantified and compared in the two groups. Results: 380 patients were randomly allocated into Favipiravir (1 9 3) and Lopinavir/Ritonavir (1 8 7) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days SD = 6 in the Favipiravir and 8.1 SD = 6.5 days in Lopinavir/Ritonavir groups) (p = 0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR = 0.94, 95% CI 0.75 � 1.17) and likewise the changes in the daily SpO2 after discontinuation of supplemental oxygen (p = 0.46) Conclusion: Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or In-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay. © 2021 Elsevier B.V

    Computational Methods for Pigmented Skin Lesion Classification in Images: Review and Future Trends

    Get PDF
    Skin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given

    Green fluorescent-conjugated anti-CEA single chain antibody for the detection of CEA-positive cancer cells

    No full text
    According to World Health Organization (WHO), cancer is a leading cause of death worldwide, accounting for 7.4 million deaths (around 13% of all deaths) in 2004. Monoclonal/recombinant antibodies, which specifically target clinical biomarkers of disease, have increasingly been applied as powerful tools in cancer imaging and therapy, a fact that is highlighted by some nine FDA-approved monoclonal antibodies (MAbs) or their immunoconjugates (as of December 2008) for use in cancer treatment. In this study, five monoclonal antibodies (MAbs) were generated and characterized against carcinoembryonic antigen (CEA), which is widely used clinically as both a blood and tissue tumor marker of epithelial malignancy. Variable domains (VH and VL) of one the stable MAbs with highest affinity were PCR-amplified and assembled as single-chain antibody fragment (scFv). Following the cloning and expression of scFv antibody fragments in Escherichia coli, the functional binding and specificity of the recombinant antibody were confirmed by ELISA. To develop a direct in vitro detection of CEA-positive cancer cells, scFv DNA was genetically fused to enhanced green fluorescent protein (EGFP) gene and expressed in bacteria. The chimeric fluorescent protein is able to specifically detect CEA-positive cell lines; no cross-reactivity was observed with a negative control cell line. This strategy will likely allow the establishment of a rapid, single-step detection assay of CEA, which is considered to be one of the best predictors of malignancy among all other tumor markers. \ua9 Copyright 2011, Mary Ann Liebert, Inc.Peer reviewed: YesNRC publication: Ye
    corecore