87 research outputs found

    Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    Get PDF
    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia \u2013 Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of 3c50\u2013100 km. In deeper parts of the up- permost mantle (depth range of 100\u2013150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere

    Constraining the quantum gravity polymer scale using LIGO data

    Full text link
    We present the first empirical constraints on the polymer scale describing polymer quantized GWs propagating on a classical background. These constraints are determined from the polymer-induced deviation from the classically predicted propagation speed of GWs. We leverage posterior information on the propagation speed of GWs from two previously reported sources: 1) inter-detector arrival time delays for signals from the LIGO-Virgo Collaboration's first gravitational-wave transient catalog, GWTC1, and 2) from arrival time delays between GW signal GW170817 and its associated gamma-ray burst GRB170817A. For pure-GW constraints, we find relatively uninformative combined constraints of ν=0.96+0.150.21×1053kg1/2\nu = 0.96\substack{+0.15 \\ -0.21} \times 10^{-53} \, \rm{kg}^{1/2} and μ=0.94+0.750.20×1048kg1/2s\mu = 0.94\substack{+0.75 \\ -0.20} \times 10^{-48} \, \rm{kg}^{1/2} \cdot s at the 90%90\% credible level for the two polymer quantization schemes, where ν\nu and μ\mu refer to polymer parameters associated to the polymer quantization schemes of propagating gravitational degrees of freedom. For constraints from GW170817/GRB170817A, we report much more stringent constraints of νlow=2.66+0.600.10×1056\nu_{\mathrm{low}} =2.66\substack{+0.60 \\ -0.10}\times 10^{-56}, νhigh=2.66+0.450.10×1056\nu_{\mathrm{high}} = 2.66\substack{+0.45 \\ -0.10}\times 10^{-56} and μlow=2.84+0.640.11×1052\mu_{\mathrm{low}} = 2.84\substack{+0.64 \\ -0.11}\times 10^{-52}, μhigh=2.76+0.460.11×1052\mu_{\mathrm{high}} = 2.76\substack{+0.46 \\ -0.11}\times 10^{-52} for both representations of polymer quantization and two choices of spin prior indicated by the subscript. Additionally, we explore the effect of varying the lag between emission of the GW and EM signals in the multimessenger case.Comment: Invited contribution to "Focus issue on Quantum Gravity Phenomenology in the Multi-Messenger Era: Challenges and Perspectives" to appear in Classical and Quantum Gravity, 18 pages, 6 figures, Part of the COST Action CA18108: Quantum gravity phenomenology in the multi-messenger approac

    Determination of normal ranges of regional and global phase parameters using gated myocardial perfusion imaging with Cedars-Sinai's QGS software

    Get PDF
    Introduction: Myocardial perfusion imaging using gated SPECT and phase analysis is an effective tool in evaluation of mechanical dyssynchrony. The purpose of this study was to determine the normal ranges of global and regional phase parameters. Methods: A total of 100 patients with normal resting and stress electrocardiograms, low pretest likelihood for coronary artery disease and a normal gated MPI study were recruited in the study. All of the patients underwent a standard 2-day stress/rest gated MPI study according to standard protocols. The reconstructed images were further analyzed by Cedar-Sinai's quantitative gated SPECT. Left ventricular phase indices were provided both globally and regionally for both genders and the normal interquartile range of these parameters were defined. Results: Normal ranges of global and wall-based regional phase parameters are presented both in unisex and in gender-specific formats. Both global (P<0.001) and major LV regional phase parameters (P<0.05) are found to be significantly different between the two genders with a significant positive association between end-diastolic volume with phase global indices (P<0.01). There is also more synchronized phase distribution in phase analysis results of post-exercise gated MPI as compared to the phase analysis of the same patients at resting state. Conclusion: Normal ranges of phase indices are defined in this article by using Cedar-Sinai's QGS software. As normal ranges of phase dyssynchrony parameters are gender-specific and are related to LV volume, stress or resting state and stress type, the need for careful incorporation of these data is indicated in interpretation of phase studies. © 2018 Tehran University of Medical Sciences. All rights reserved

    Additively manufactured multi-morphology bone-like porous scaffolds: experiments and micro-computed tomography-based finite element modeling approaches

    Get PDF
    Tissue engineering, whose aim is to repair or replace damaged tissues by combining the principle of biomaterials and cell transplantation, is one of the most important and interdisciplinary fields of regenerative medicine. Despite remarkable progress, there are still some limitations in the tissue engineering field, among which designing and manufacturing suitable scaffolds. With the advent of additive manufacturing (AM), a breakthrough happened in the production of complex geometries. In this vein, AM has enhanced the field of bioprinting in generating biomimicking organs or artificial tissues possessing the required porous graded structure. In this study, triply periodic minimal surface structures, suitable to manufacture scaffolds mimicking bone's heterogeneous nature, have been studied experimentally and numerically; the influence of the printing direction and printing material has been investigated. Various multi-morphology scaffolds, including gyroid, diamond, and I-graph and wrapped package graph (I-WP), with different transitional zone, have been three-dimensional (3D) printed and tested under compression. Further, a micro-computed tomography (µCT) analysis has been employed to obtain the real geometry of printed scaffolds. Finite element analyses have been also performed and compared with experimental results. Finally, the scaffolds' behavior under complex loading has been investigated based on the combination of µCT and finite element modeling

    White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era

    Full text link
    The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach (QG-MM)", in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology.Comment: Submitted to CQG for the Focus Issue on "Quantum Gravity Phenomenology in the Multi-Messenger Era: Challenges and Perspectives". Please contact us to express interesst of endorsement of this white pape

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio

    Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia

    Get PDF
    Background: We examined the safety and efficacy of a treatment protocol containing Favipiravir for the treatment of SARS-CoV-2. Methods: We did a multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. Patients with typical ground glass appearance on chest computerized tomography scan (CT scan) and oxygen saturation (SpO2) of less than 93 were enrolled. They were randomly allocated into Favipiravir (1.6 gr loading, 1.8 gr daily) and Lopinavir/Ritonavir (800/200 mg daily) treatment regimens in addition to standard care. In-hospital mortality, ICU admission, intubation, time to clinical recovery, changes in daily SpO2 after 5 min discontinuation of supplemental oxygen, and length of hospital stay were quantified and compared in the two groups. Results: 380 patients were randomly allocated into Favipiravir (1 9 3) and Lopinavir/Ritonavir (1 8 7) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days SD = 6 in the Favipiravir and 8.1 SD = 6.5 days in Lopinavir/Ritonavir groups) (p = 0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR = 0.94, 95% CI 0.75 � 1.17) and likewise the changes in the daily SpO2 after discontinuation of supplemental oxygen (p = 0.46) Conclusion: Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or In-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay. © 2021 Elsevier B.V

    Computational Methods for Pigmented Skin Lesion Classification in Images: Review and Future Trends

    Get PDF
    Skin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given
    corecore