1,383 research outputs found
Systematics within Gyps vultures: a clade at risk
BACKGROUND: Populations of the Oriental White-backed Vulture (Gyps bengalensis) have declined by over 95% within the past decade. This decline is largely due to incidental consumption of the non-steroidal anti-inflammatory veterinary pharmaceutical diclofenac, commonly used to treat domestic livestock. The conservation status of other Gyps vultures in southern Asia is also of immediate concern, given the lack of knowledge regarding status of their populations and the continuing existence of taxonomic uncertainties. In this study, we assess phylogenetic relationships for all recognized species and the majority of subspecies within the genus Gyps. The continuing veterinary use of diclofenac is an unknown but potential risk to related species with similar feeding habits to Gyps bengalensis. Therefore, an accurate assessment of the phylogenetic relationships among Gyps vultures should aid in their conservation by clarifying taxonomic uncertainties, and enabling inference of their respective relatedness to susceptible G. bengalensis. RESULTS: Phylogenetic results using mitochondrial cytB, ND2 and control region sequence data indicate a recent and rapid diversification within the genus Gyps. All recognized species formed monophyletic groups with high statistical support, with the exception of the Eurasian Vulture, for which specimens identified as subspecies G. fulvus fulvescens appear closely related to the Himalayan Vulture (G. himalayensis). In all analyses, the earliest divergence separated the Oriental White-backed Vulture from other Gyps taxa, with the next diverging taxon being either the African White-backed Vulture (G. africanus), or the Himalayan Vulture. All analyses supported a sister relationship between the Eurasian Vulture (G. f. fulvus), and Rüppell's Vulture (G. rueppellii), with this clade being sister to another consisting of the two taxa of "Long-billed" Vulture (G. indicus indicus and G. i. tenuirostris), and the Cape Vulture (G. coprotheres). These molecular phylogenies strongly support the treatment of indicus and tenuirostris as separate species, as does morphological data showing that these two taxa of similar overall size differ in proportions, especially in rostral, alar, and pedal characters. In addition, grouping of bengalensis and africanus together in the genus Pseudogyps, as historically proposed, is not upheld based on mitochondrial data. CONCLUSION: Both molecular and morphological data provide strong support for considering the "Long-billed" Vulture to be comprised of two species (G. indicus and G. tenuirostris), and further analysis is warranted to determine the taxonomic distinctiveness of G. f. fulvescens. Our phylogenetic analyses and conservative estimates suggest the diversification of Gyps taxa to be within the past 6 million years. Diclofenac susceptibility has been previously demonstrated for four Gyps species (G. indicus, G. fulvus, G. africanus, G. bengalensis), and the phylogenetic position of these species each forming a sister relationship with at least one of the remaining species, support concern that other Gyps taxa may be susceptible as well. Determining genetic and evolutionary distinctiveness for Gyps lineages is increasingly important as a breeding program is being established to prevent extinction
Targeted Assembly of Short Sequence Reads
As next-generation sequence (NGS) production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants, by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled strin-gently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming ge-nomic mutations, polymorphism, fusion and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly
The DNA repair enzyme, aprataxin, plays a role in innate immune signaling.
Ataxia with oculomotor apraxia type 1 (AOA1) is a progressive neurodegenerative disorder characterized by a gradual loss of coordination of hand movements, speech, and eye movements. AOA1 is caused by an inactivation mutation in the APTX gene. APTX resolves abortive DNA ligation intermediates. APTX deficiency may lead to the accumulation of 5’-AMP termini, especially in the mitochondrial genome. The consequences of APTX deficiency includes impaired mitochondrial function, increased DNA single-strand breaks, elevated reactive oxygen species production, and altered mitochondrial morphology. All of these processes can cause misplacement of nuclear and mitochondrial DNA, which can activate innate immune sensors to elicit an inflammatory response. This study explores the impact of APTX knockout in microglial cells, the immune cells of the brain. RNA-seq analysis revealed significant differences in the transcriptomes of wild-type and APTX knockout cells, especially in response to viral infections and innate immune pathways. Specifically, genes and proteins involved in the cGAS-STING and RIG-I/MAVS pathways were downregulated in APTX knockout cells, which suggests an impaired immune response to cytosolic DNA and RNA. The clinical relevance of these findings was supported by analyzing publicly available RNA-seq data from AOA1 patient cell lines. Comparisons between APTX-deficient patient cells and healthy control cells also revealed altered immune responses and dysregulated DNA- and RNA-sensing pathways in the patient cells. Overall, this study highlights the critical role of APTX in regulating innate immunity, particularly in DNA- and RNA-sensing pathways. Our findings contribute to a better understanding of the underlying molecular mechanisms of AOA1 pathology and highlights potential therapeutic targets for this disease
High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago
Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base
Desiderata for the development of next-generation electronic health record phenotype libraries
Background
High-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large electronic health record repositories and are characterized by properties such as portability, reproducibility, and validity. Phenotype libraries, where definitions are stored, have the potential to contribute significantly to the quality of the definitions they host. In this work, we present a set of desiderata for the design of a next-generation phenotype library that is able to ensure the quality of hosted definitions by combining the functionality currently offered by disparate tooling.
Methods
A group of researchers examined work to date on phenotype models, implementation, and validation, as well as contemporary phenotype libraries developed as a part of their own phenomics communities. Existing phenotype frameworks were also examined. This work was translated and refined by all the authors into a set of best practices.
Results
We present 14 library desiderata that promote high-quality phenotype definitions, in the areas of modelling, logging, validation, and sharing and warehousing.
Conclusions
There are a number of choices to be made when constructing phenotype libraries. Our considerations distil the best practices in the field and include pointers towards their further development to support portable, reproducible, and clinically valid phenotype design. The provision of high-quality phenotype definitions enables electronic health record data to be more effectively used in medical domains
Imaging Oxygen Distribution in Marine Sediments. The Importance of Bioturbation and Sediment Heterogeneity
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns:the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment–water interface
Metabolic state alters economic decision making under risk in humans
Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans.
Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively.
Conclusions/Significance:
We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity
Design of Experiments for Screening
The aim of this paper is to review methods of designing screening
experiments, ranging from designs originally developed for physical experiments
to those especially tailored to experiments on numerical models. The strengths
and weaknesses of the various designs for screening variables in numerical
models are discussed. First, classes of factorial designs for experiments to
estimate main effects and interactions through a linear statistical model are
described, specifically regular and nonregular fractional factorial designs,
supersaturated designs and systematic fractional replicate designs. Generic
issues of aliasing, bias and cancellation of factorial effects are discussed.
Second, group screening experiments are considered including factorial group
screening and sequential bifurcation. Third, random sampling plans are
discussed including Latin hypercube sampling and sampling plans to estimate
elementary effects. Fourth, a variety of modelling methods commonly employed
with screening designs are briefly described. Finally, a novel study
demonstrates six screening methods on two frequently-used exemplars, and their
performances are compared
- …