399 research outputs found

    Evaluating the robustness of objective pilling classification with the two-dimensional discrete wavelet transform

    Full text link
    Previously, we proposed a new method of frequency domain analysis based on the two-dimensional discrete wavelet transform to objectively measure pilling intensity in sample fabric images. We have further evaluated this method, and our results indicate that it is robust to small horizontal and/or vertical translations and to significant variations in the brightness of the image under analysis, and is sensitive to rotation and to dilation of the image. These results suggest that as long as precautions are taken to ensure fabric test samples are imaged under consistent conditions of weave/knit pattern alignment (rotation) and apparent interyarn pitch (dilation), the method will yield repeatable results. <br /

    Coulomb correlations effects on localized charge relaxation in the coupled quantum dots

    Full text link
    We analyzed localized charge time evolution in the system of two interacting quantum dots (QD) (artificial molecule) coupled with the continuous spectrum states. We demonstrated that Coulomb interaction modifies relaxation rates and is responsible for non-monotonic time evolution of the localized charge. We suggested new mechanism of this non-monotonic charge time evolution connected with charge redistribution between different relaxation channels in each QD.Comment: 10 pages, 10 figure

    The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium

    Get PDF
    The RNA chaperone, Hfq, plays a diverse role in bacterial physiology beyond its original role as a host factor required for replication of Qβ RNA bacteriophage. In this study, we show that Hfq is involved in the expression and secretion of virulence factors in the facultative intracellular pathogen, Salmonella typhimurium. A Salmonella hfq deletion strain is highly attenuated in mice after both oral and intraperitoneal infection, and shows a severe defect in invasion of epithelial cells and a growth defect in both epithelial cells and macrophages in vitro. Surprisingly, we find that these phenotypes are largely independent of the previously reported requirement of Hfq for expression of the stationary phase sigma factor, RpoS. Our results implicate Hfq as a key regulator of multiple aspects of virulence including regulation of motility and outer membrane protein (OmpD) expression in addition to invasion and intracellular growth. These pleiotropic effects are suggested to involve a network of regulatory small non-coding RNAs, placing Hfq at the centre of post-transcriptional regulation of virulence gene expression in Salmonella. In addition, the hfq mutation appears to cause a chronic activation of the RpoE-mediated envelope stress response which is likely due to a misregulation of membrane protein expression

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Learning from multimedia and hypermedia

    Get PDF
    Computer-based multimedia and hypermedia resources (e.g., the world wide web) have become one of the primary sources of academic information for a majority of pupils and students. In line with this expansion in the field of education, the scientific study of learning from multimedia and hypermedia has become a very active field of research. In this chapter we provide a short overview with regard to research on learning with multimedia and hypermedia. In two review sections, we describe the educational benefits of multiple representations and of learner control, as these are the two defining characteristics of hypermedia. In a third review section we describe recent scientific trends in the field of multimedia/hypermedia learning. In all three review sections we will point to relevant European work on multimedia/hypermedia carried out within the last 5 years, and often carried out within the Kaleidoscope Network of Excellence. According to the interdisciplinary nature of the field this work might come not only from psychology, but also from technology or pedagogy. Comparing the different research activities on multimedia and hypermedia that have dominated the international scientific discourse in the last decade reveals some important differences. Most important, a gap seems to exist between researchers mainly interested in a “serious” educational use of multimedia/ hypermedia and researchers mainly interested in “serious” experimental research on learning with multimedia/hypermedia. Recent discussions about the pros and cons of “design-based research” or “use-inspired basic research” can be seen as a direct consequence of an increasing awareness of the tensions within these two different cultures of research on education

    Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE Study

    Get PDF
    Aims/hypothesis: Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. Methods: We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40% European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. Results: Four novel associations were identified (p < 5 × 10−9), including three loci associated with fasting insulin, and a novel, low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at the known PPP1R3B locus in transethnic meta-analysis. Conclusions/interpretation: Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the continued importance of conducting genetic studies in diverse populations. Data availability: Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/downloads/summary-statistics)

    Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    Get PDF
    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P&lt;10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P&lt;5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health
    corecore