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Abstract
Aims/hypothesis Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting 
glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding 
of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 
500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based 
only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting 
insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. 
Methods We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in 
participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40%
European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-
analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. 
Results Four novel associations were identified (p < 5  ×  10−9), including three loci associated with fasting insulin, and a novel, 
low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were 
identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at 
the known PPP1R3B locus in transethnic meta-analysis.
Conclusions/interpretation Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the 
continued importance of conducting genetic studies in diverse populations.
Data availability Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI 
GWAS catalog (https://www.ebi.ac.uk/gwas/downloads/summary-statistics).
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GS Glycogen synthase
GWAS Genome-wide association studies
HA Hispanic/Latino

Hispanic Community Health
Study/Study of Latinos

HI Native Hawaiian
JHS Jackson Heart Study
LD Linkage disequilibrium
MAF Minor allele frequency
MAGIC Meta-Analyses of Glucose and

Insulin-related traits Consortium
MEC Multiethnic Cohort
MESA Multi-Ethnic Study of Atherosclerosis
NAm Native American
PAGE Population Architecture using Genomics and

Epidemiology
PPP1R3B Protein phosphatase 1 regulatory subunit 3B
REGARDS Reasons for Geographical

and Racial Differences in Stroke
WHI Women’s Health Initiative

Introduction

Type 2 diabetes is a growing public health challenge, affecting
approximately 14.6% of the US population [1] and expected
to double in prevalence in the next two decades [2–4].
Investigating the genetic architecture of quantitative traits,
including fasting glucose, fasting insulin and HbA1c, that
serve as early markers of type 2 diabetes progression may lead
to a deeper understanding of type 2 diabetes aetiology. For

example, prior genome-wide association studies (GWAS) of
glycaemic traits identified novel loci in genes and pathways
related to glucose metabolism, circadian rhythm regulation,
and cell proliferation and development [5, 6], as well as eryth-
rocyte characteristics that can influence HbA1c [7].

Despite the success of prior glycaemic trait GWAS, which
have identified nearly 600 loci [5, 6, 8–11], most of these
findings were identified in populations primarily of
European ancestry. Such limited ancestral diversity reduces
our ability to map novel loci [12–18]. Additionally, locus
characterisation and fine-mapping can be improved through
multi-ethnic studies that increase sample size and leverage
differences in linkage disequilibrium (LD) structure between
diverse populations [19–22].

This study examined the genetic architecture of fasting
glucose, fasting insulin and HbA1c in participants of the diverse
Population Architecture using Genomics and Epidemiology
(PAGE) Study [23]. We aimed to identify novel genetic loci
and independent secondary association signals at previously
identified regions and characterise these loci through transethnic
fine-mapping.

Methods

Ethics statements Approval by the Institutional Review
Boards was obtained for each participating cohort. Informed
consent was obtained from all participants, and the study was
conducted in accordance with the principles of the Declaration
of Helsinki.

HCHS/SOL



Study population This study included adults without diabetes
who self-identified as African American (AA), Hispanic/
Latino (HA), Asian (ASN), Native Hawaiian (HI), Native
American (NAm), European (EA) or other race/ethnicity,
enrolled in the Atherosclerosis Risk in Communities (ARIC)
study, the Ichan Mount Sinai School of Medicine’s BioMe
Biobank (BioMe), the Coronary Artery Risk Development in
Young Adults Study (CARDIA), the Multiethnic Cohort
(MEC) Study, the Hispanic Community Health Study/Study
of Latinos (HCHS/SOL) and the Women’s Health Initiative
(WHI) (see electronic supplementary material [ESM]
Methods for details). These studies were part of the PAGE
Study consortium, an NIH-funded effort to characterise the
genetic architecture of complex traits among historically
underrepresented populations through large-scale genetic
epidemiology research [23].

In this paper, we stratified populations based on self-
identified race/ethnicity due to historical reasons (e.g.
genotyping datasets and study recruitment) and in recognition
of the shared lived experiences of people based on self-
identified grouping. To address confounding by population
stratification, we included ancestral principal components in
our models. We conducted two main analyses: transethnic
analyses in the entire population; and analyses stratified by
self-identified race/ethnicity. Participants who self-identified
as ‘other race/ethnicity’ were included in all transethnic anal-
yses but because of lack of power due to small sample sizes,
no population-specific analyses for this group are presented.

Trait measurement Fasting glucose and fasting insulin
concentrations (fasting > 8 h) were measured using standard
assays at baseline visits; for all cohorts except HCHS/SOL,
HbA1c was measured at a subsequent visit. Glycaemic trait
measurements among individuals with type 2 diabetes reflect
their current glycaemic control, which is influenced by their
access and adherence to medical treatment; therefore, individ-
uals were excluded from analysis if they reported a previous
diabetes diagnosis or fasting glucose concentrations consistent
with diabetes (≥ 7.0 mmol/l). Because HbA1c was not
measured at the same time point as fasting glucose and fasting
insulin in most cohorts and was only added as a diagnostic
criterion for diabetes in 2009 [24], after the majority of data
were collected, individuals with HbA1c ≥ 48.0 mmol/mol
(6.5%) were not excluded from the study population.
However, for HbA1c analyses, individuals with extreme
HbA1c values (HbA1c ≥ 65.0mmol/mol [8.1%]) were exclud-
ed. Individuals with BMI >70 kg/m2 were also excluded for
all traits.

Contributing samples were genotyped using multiple plat-
forms (ESM Methods, ESM Table 1). A total of 53,426
samples were genotyped on the MEGA array, which was
specifically designed to increase variant coverage across
multiple ethnic groups [25, 26]. Additionally, 28,477

participants with fasting glucose measurements, 12,296
participants with HbA1c measurements and 26,965 partici-
pants with fasting insulin measurements from ARIC, BioMe,
CARDIA, MEC and WHI were previously genotyped using
either Illumina or Affymetrix arrays within each individual
study/stratum. All studies used standard quality control filters
(ESM Table 1). Ancestral principal component analysis was
conducted to evaluate and adjust for population substructure,
as previously described in Wojcik et al [26].

Statistical analyses Fasting glucose concentrations, natural-log-
transformed fasting insulin concentrations, and HbA1c

measurements were each adjusted for age at trait measurement,
sex, age × sex interaction, BMI (kg/m2), smoking status, self-
reported race/ethnicity and study centre (see ESMMethods for
details of covariate measurements), after which residuals were
computed and inverse-normally transformedwithin each genet-
ic dataset (e.g. population-specific for ARIC or substudy for
WHI). In sensitivity analyses, models were estimated excluding
BMI. Association analyses for each dataset were performed
using SUGEN version 8.10 (https://github.com/dragontaoran/
SUGEN), which implemented a generalised estimating
equation method that accounts for relatedness, while adjusting
for ten ancestral principal components [27]. Subsequently,
fixed-effects models with inverse variance weighting were used
to pool dataset-specific variant effect estimates and their SEs
across populations as well as within populations usingMETAL
version 2011-03-25 (http://csg.sph.umich.edu/abecasis/Metal/
download/), after applying genomic control correction [28].
Variants with an effective n < 30 or an imputation R2 < 0.4
within a given dataset were excluded from meta-analysis. To
account for testing of multiple traits across multiple ancestries,
we defined novel loci as those in which the lead variant reached
a genome-wide significance threshold of p < 5.0 × 10−9, as
done previously [26], and were located more than 500 KB from
any previously established loci for the given glycaemic trait.

Fine-mapping To identify independent secondary signals,
stepwise conditional analyses were performed for the
transethnic meta-analysis results, conditioning on the most
significant variants (known and novel) identified in our
GWAS and applying genomic control correction. After condi-
tioning on the top genome-wide significant (p < 5 × 10−9)
variant, variants identified within a 1 MB region of the variant
with a p value < 5.0 × 10−8 were considered significant,
independent signals. These conditional analyses were repeat-
ed, adding in the conditional lead variants until no variant had
a conditional p value less than the locus-specific significance
(p < 5.0 × 10−8). To determine whether identified secondary
signals at known loci were independent from known second-
ary signals, we also conditioned on known variants reported in
the literature.

https://github.com/dragontaoran/SUGEN
https://github.com/dragontaoran/SUGEN
http://csg.sph.umich.edu/abecasis/Metal/download/
http://csg.sph.umich.edu/abecasis/Metal/download/


We subsequently performed fine-mapping of novel prima-
ry analysis loci and independent secondary loci using
FINEMAP version 1.4_x86_64 (http://www.christianbenner.
com) [29]. All variants within ±1 MB of each novel primary
and independent secondary variants were included for fine-
mapping, restricting to variants with a stratum specific
effective n > 30 and imputation R2 > 0.4. If variants
demonstrated population-specific significance, a population-
specific LD matrix was constructed; for all other variants with
genome-wide significance in the transethnic meta-analysis, a
combined ancestry LD matrix was constructed by computing
population-specific LD matrices and subsequently weighting
by population sample size. We then computed the posterior
probabilities of k causal variants at each reported locus and
constructed a 95% credible set (CS). LocusZoom plots [30] of
the CS top variants were generated to visualise the signals
identified at each locus.

Replication Replication of novel loci was performed under a
common analysis plan; variant proxies in high LD (D′ and r2

> 0.9 in the population of interest) were used if the variant of
interest was not genotyped or well-imputed in the following four
multi-ethnic studies: Jackson Heart Study (JHS); Cameron
County Hispanic Cohort (CCHC); Reasons for Geographical
And Racial Differences in Stroke (REGARDS) Study; and
Multi-Ethnic Study of Atherosclerosis (MESA). Additionally,
published summary statistics from the China Health and
Nutrition Survey (CHNS) cohort [31] and an analysis of individ-
uals of EA ancestry from Lagou et al and the Meta-Analyses of
Glucose and Insulin-related traits Consortium (MAGIC) [32]
were also included for replication analyses (ESM Methods).
We used the R package MetaSubtract version 1.60 (https://cran.
r-project.org/web/packages/MetaSubtract/) [33] to remove
overlapping EA ARIC cohort results from the Lagou et al
summary statistics before their inclusion in replication (ESM
Methods). A maximum of n = 8459, n = 92,432, n = 3406
and n = 6476 AA, EA, HA and ASN participants, respectively,
were identified for replication of fasting glucose, fasting insulin
andHbA1c novel variants. Replication data were not available for
HI and NAm populations. Significance was determined using
Bonferroni correction (0.05/number of significant novel indepen-
dent signals). All replication results were meta-analysed in
transethnic and population-specific analyses, usingMETAL [28].

Functional annotation Finally, to characterise the putative
functionality of variants, we performed bioinformatic
follow-up for all novel primary and independent secondary
variants, as well as the top variants identified in each fine-
mapping CS. We used the UCSC Genome Browser Islet
Regulome tracks [34–36], which include data on chromatin
classes, cytokine-induced regulatory elements and enhancer
hubs in both adult human islets and pancreatic progenitors.
Additionally, we created a custom UCSC Genome Browser

analysis hub of important regions (e.g. enhancer and repressor
activities, DNase I hypersensitive sites [DHS] and transcribed
regions) in the pancreas and insulin-responsive tissues, includ-
ing skeletal muscle, liver and adipose tissue, using GTEx [37]
and Roadmap Epigenome Project [38] data.

Results

Study overviewAfter exclusions, a total of 52,267, 23,357 and
48,395 participants were available for fasting glucose, HbA1c

and fasting insulin GWAS, respectively (ESM Table 2), of
which collectively over half were either self-reported AA or
HA (maximum 23% AA, 46% HA, 40% EA, 4% ASN, 3%
HI, 0.8% NAm). The mean age of participants was 54.5 years
and they were overweight (mean ± SDBMI 28.0 ± 5.7), with
a greater representation of female participants (72%).
Glycaemic trait distributions were similar across studies and
self-reported race/ethnic groups, with mean ± SD fasting
glucose levels ranging from 4.5 ± 0.5 mmol/l to 5.5 ±
0.6 mmol/l, HbA1c levels ranging from 34.0 ± 3.5 (5.3%)
mmol/mol to 38.6 ± 3.2 (5.7%) mmol/mol and fasting insulin
levels ranging from 32.3 ± 19.7 pmol/l to 80.9 ± 59.0 pmol/l.

Identification of significant loci In the transethnic meta-analy-
sis, we identified a total of 13, 13 and 11 genome-wide signif-
icant (p < 5.0 × 10−9) loci for fasting glucose, HbA1c and
fasting insulin, respectively (Fig. 1 and ESM Table 3, ESM
Fig. 1). Several loci and, in some cases, several top variants
were shared across glycaemic traits: G6PC2 for fasting
glucose and HbA1c (shared top variant: rs560887); GCKR
for fasting glucose and fasting insulin (shared top variant:
rs1260326); SLC2A2 for fasting glucose and HbA1c (shared
top variant: rs1879442); and GCK for fasting glucose and
HbA1c. Effect estimates for significant variants were generally
consistent across populations (Fig. 2 and ESM Fig. 1),
although statistical significance varied, often in accordance
with minor allele frequency (MAF) and/or sample size.

Three of the 34 significant loci identified in transethnic
GWAS were novel (± 500 KB from a known variant) at time
of analysis (January 2020) and were associated with fasting insu-
lin: the VEGFA (also known as MVCD1, VEGF or VPF) locus
on chromosome 6 (lead variant rs9472142, p = 5.56 × 10−10);
the CASC8/CASC21 (also known as CARLO1, CARLo-1,
LINC00860, CARLO2, CARLo-2 or LINC01244) locus on chro-
mosome 8 (lead variant rs35131928, p = 2.70 × 10−9); and the
PTEN (also known as 10q23del, BZS, CWS1, DEC, GLM2,
MHAM, MMAC1, PTEN1, PTENbeta or TEP1) locus on chro-
mosome 10 (lead variant rs10887773, p = 4.55 × 10−10)
(Table 1, Figs 1, 2).Wide variation inMAFwas observed across
populations for lead variants at these three novel loci, particularly
for rs9472142 at the VEGFA locus (MAF range 0.12–0.36) and
rs10887773 at the PTEN locus (MAF range 0.10–0.37). Effect

http://www.christianbenner.com
http://www.christianbenner.com
https://cran.r-project.org/web/packages/MetaSubtract/
https://cran.r-project.org/web/packages/MetaSubtract/


estimates were generally directionally consistent across popula-
tions (Fig. 2). We also identified a fourth novel locus associated
with fasting glucose in the population-specific meta-analysis of
self-identified African Americans: the LRRC37A5P (also known
as C9orf29) locus on chromosome 9 (lead variant rs571025325,
pAA = 4.58 × 10−9) (Table 1, Figs 1, 2), with a MAF of 0.0037.

Replication of lead variants at four novel loci Replication of
lead variants or proxy variants at the four potentially novel
loci was performed through transethnic meta-analysis of inde-
pendent AA (n range 1311–4986), ASN (n range 667–5809),
EA (n range 1054–97,348) and HA (n range 1189–2217)
cohorts, with EA fasting insulin results from published
summary statistics from Lagou et al contributing the largest
sample size. Lead variants for all three novel fasting insulin
loci showed directionally consistent effects, although consid-
erable effect attenuation was observed. The PTEN lead variant
was significant at the Bonferroni-corrected significance level
of p = 0.0125 (α = 0.05/4 signals) in independent transethnic
meta-analysis and the other two fasting insulin loci showed
suggestive significance, particularly CASC8/CASC21 (p =
0.0174) (Fig. 2 and ESM Table 4). The fourth locus (fasting
glucose, LRRC37A5P), which was observed only in AA-
specific meta-analysis, did not show evidence of replication
(p = 0.62), although only 41 of the 5110 replication dataset
participants were expected to carry at least one copy of the

minor allele (ESM Table 4). Furthermore, in Chen et al’s [39]
recently published glycaemic traits GWAS, our VEGFA,
PTEN andCASC8/CASC21 lead variants showed significance
in transethnic (VEGFA and PTEN), EA-specific (VEGFA,
PTEN) and East Asian-specific (PTEN, CASC8/CASC21)
meta-analyses; however, these results are not an independent
replication as they contain overlapping data from the ARIC,
BioMe, WHI, HCHS/SOL and several replication cohorts
used here (ESM Table 4).

Secondary analyses at known glycaemic trait loci Through
stepwise conditional analysis, we identified seven significant
secondary signals at known glycaemic trait loci, including two
previously unreported fasting glucose (GCK [also known as
FGQTL3, GK, GLK, HHF3, HK4, HKIV, HXKP, LGLK,
MODY2 or PNDM1], rs55908146) and fasting insulin
(PPP1R3B [also known as GL, PPP1R4 or PTG], rs330941)
secondary signals that remained significant after conditioning
upon known variants (Table 2 and ESM Table 5). Wide vari-
ation in MAF was observed across populations for both novel
independent secondary signals rs330941 (MAF range 0.22–
0.49) and rs55908146 (MAF range 0.15–0.32) (Table 2).

Fine-mapping To identify the most likely causal variant(s) for
the four putatively novel loci and two novel independent
secondary signals, we subsequently utilised FINEMAP to

Fig. 1 Manhattan plots for glycaemic trait association analyses in PAGE,
adjusting for BMI. (a) Fasting insulin transethnic meta-analysis results.
(b) HbA1c transethnic meta-analysis results. (c) Fasting glucose
transethnic meta-analysis results. (d) Fasting glucose AA-specific meta-

analysis results. Known loci are shown in grey; novel loci with p value <
1 × 10−6 are shown in purple; novel loci with p value < 5 × 10−9 are
shown in pink



estimate the number of causal variants per locus and generate
a 95% CS for each causal variant. For three of the four novel
loci (LRRC37A5P, CASC8/CASC21, PTEN) we estimated
one causal variant at each locus (k = 1) (Table 3); at these
loci, the top variants in our GWAS analyses (rs571025325,
rs35131928, rs10887773) were identified as the variants most
likely to be causal, although with varying posterior probabil-
ities of being the top causal variant (range 0.06–0.79) (ESM
Tables 6, 7, 8). The broad range of posterior probabilities by
locus reflects the size of the LD block. For the fourth novel
locus (VEGFA), the highest posterior probability was
observed for k = 2 causal variants, with our top GWAS vari-
ant rs9472142 identified as the top variant in CSVEGFA1
(Table 3 and ESM Table 9); the top variant in CSVEGFA2
(rs6910726) was just under the significance threshold in our
stepwise conditional analysis, with p = 4.20 × 10−6 (ESM
Table 5).

For the two novel independent secondary signals, the
highest posterior probabilities were estimated for k = 2
(PPP1R3B) and k = 4 (GCK) causal variants (Table 3).

Because we did not perform any LD pruning, we identified
CSs containing many variants in high LDwith each other, and
therefore low individual posterior probabilities of being the
top causal variant in each CS. For example, at the PPP1R3B
locus, for the variants in CSPPP1R3B1, the posterior probabili-
ties of being the top causal variant range between 0.11 and
0.26 (ESM Table 10). The top three variants in CSPPP1R3B2,
including the most significant variant from our conditional
analysis, rs330941, are in high LD with each other but not
the CSPPP1R3B1 variants, and posterior probabilities for these
three variants range from 0.24 to 0.37 (ESM Table 10). The
novel GCK secondary signal rs55908146 was among the top
five variants in CSGCK3, all of which had a probability of
being the top variant in CSGCK3 of about 0.10, additionally
suggesting an LD block (ESMTable 11). LocusZoom plots of
the loci with more than one CS showed that the CSs have little
shared LD (ESM Fig. 2).

Functional annotationWe performed bioinformatic follow-up
of the novel primary loci and known loci with independent

Fig. 2 Forest plots of primary GWAS and replication transethnic and
population-specific meta-analysis effect estimates and 95% CIs for the
four novel variants identified in the PAGE Study. (a) Fasting glucose
variant rs571025315 at LRRC37A5P locus, which was genome-wide
significant (p < 5 × 10−9) only in AA-specific meta-analysis. Effective
n < 30 for all other populations in the primary analysis, indicated by
sample size n = NA in the primary analysis panel. (b) Fasting insulin
variant rs9472142 at VEGFA locus. (c) Fasting insulin variant
rs35131928 at CASC8/CASC21 locus; EA REGARDS replication data

used proxy variant rs10956361 in lieu of rs35131928 (D′ = 1 and r2 = 1
with rs35131928 in EA PAGE data). (d) Fasting insulin variant
rs10887773 at PTEN locus. PAGE Study GWAS results for transethnic
and population-specific meta-analyses are shown against a white back-
ground; transethnic and population-specific meta-analyses of replication
results are shown against a grey background. Replication data sources, by
population, are as follows: AA, JHS, REGARDS; EA, REGARDS,
MESA, MAGIC; HA, MESA, CCHC; and ASN, MESA, CHNS
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secondary signals using the UCSC Genome Browser Islet
Regulome tracks [34–36] and a custom UCSC analysis hub
of important regions (e.g. enhancer and repressor activities,
DHS and transcribed regions) in the pancreas and insulin-
responsive tissues including skeletal muscle, liver and adipose
tissue. However, functional annotation of the top variants in
the fine-mapping CSs for each loci did not indicate a clear
potential mechanism through which variants may act; gene
expression in the GTEx dataset [40] showed ubiquitous levels
of expression across tissues for most of the loci, and human
pancreatic islet chromatin state data showed chromatin state
markers of expression in the general regions of many of the
loci (data not shown).

Discussion

Examining the genetic architecture of glycaemic traits in a
diverse study, we identified three novel (at time of analysis,
January 2020) fasting insulin loci shared across populations
and a fourth low-frequency fasting glucose locus specific to
self-identified AAs. Additionally, we identified two previous-
ly unreported independent secondary signals in the PPP1R3B
and GCK loci associated with fasting insulin and fasting
glucose, respectively. These results emphasise the continued
need for more GWAS in diverse populations to assess the
genetic heterogeneity of complex diseases.

While this paper was under review, Chen et al and the
MAGIC consortium published a large-scale transancestry
analysis of glycaemic traits, aggregating GWAS data from
up to 281,416 individuals without diabetes [39]. They identi-
fied the novel fasting insulin-associatedPTEN locus identified
here (r2 = D′ = 1 between our identified variant rs10887773
and Chen et al’s variant rs12769346), as well as a fasting
insulin variant in the VEGFA locus. However, after condition-
ing on Chen et al’s top variant (rs998584), our identified
VEGFA top variant remained genome-wide significant (p <
5 × 10−9). Additionally, there was low LD between the
VEGFA variants (r2PAGE rs9472142 and MAGIC rs998584 = 0.03,
D′PAGE rs9472142 and MAGIC rs998584 = 0.35); we note that
rs9472152, which was contained within both of our VEGFA
fine-mapping 95% CSs, is located near rs998584, with
r2rs9472125 and MAGIC rs998584 = 0.01 and D′rs9472125 and MAGIC

rs998584 = 0.61 between the two variants, as calculated from
the PAGE combined ancestry LD. The independent fasting
insulin and fasting glucose secondary signals we identified
in the PPP1R3B and GCK loci were not among the variants
identified at these loci by Chen et al.

Although there was overlap in the cohorts in our PAGE
data and in Chen et al, including ARIC, BioMe, WHI and
HCHS/SOL, in the PAGE Study much of our contributing
genetic data from these cohorts were newly genotyped on
the MEGA array, which was specifically designed to

increase variant coverage across multiple ancestry groups
[25, 26]. Additionally, the distribution of ancestry groups
varied across the two analyses: PAGE data had a higher
percentage of non-EA participants (% non-EA range
60.0% [fasting insulin] to 62.4% [fasting glucose]) than
Chen et al, in which approximately 30% of participants
were non-EA. While the PAGE Study’s statistical power
is diminished by a smaller sample size, due to the increased
ancestral diversity and finer genotyping on the MEGA
array, we identified two loci not identified by Chen et al
and one that was reported by Chen et al [39]. Both
approaches provide complementary information on the
genetic architecture of glycaemic traits in diverse
populations.

The three novel fasting insulin loci identified via
transethnic meta-analysis (VEGFA, CASC8/CASC21 and
PTEN) and the novel fasting glucose AA-specific locus
(LRRC37A5P) harbour genes with biologically plausible roles
in insulin signalling and beta cell function. VEGFA has been
associated with type 2 diabetes [41], waist/hip ratio [42, 43]
and erythrocyte traits [44, 45]. Novel variant rs9472142, in
CSVEGFA1, is in high LD (r2EA = 0.97) with an identified
VEGFA type 2 diabetes variant (rs9472138), supporting an
early role of this signal prior to type 2 diabetes onset [22].
Mouse models have also demonstrated that VEGFA signalling
is necessary for pancreas specification and differentiation and
plays important roles in pancreatic islet blood vessel mainte-
nance and blood flow [46]. CASC8/CASC21 are cancer
susceptibility genes and have not been previously associated
with insulin or type 2 diabetes, although the CASC8 locus has
been associated with BMI-adjusted waist/hip ratio in individ-
uals of African ancestry [47]. The low probability for any
single variant identified in fine-mapping CS1 for CASC8/
CASC21 indicates an LD block or haplotype for this locus.
PTEN is involved in the negative regulation of insulin signal-
ling [48] and has been associatedwith type 2 diabetes [41, 49].
A low probability for any single variant in fine-mapping
CSPTEN1 also indicates a likely LD block or haplotype for this
locus. Although several variants in our final novel locus,
LRRC37A5P, have previously shown suggestive significance
(p < 1.0 × 10−6) in association with diastolic BP in a
transethnic meta-analysis of the metabolic syndrome [50], this
locus has not previously been associated with fasting glucose.
The pseudogene LRRC37A5P is next to the PTGR1 gene
encoding an enzyme involved in the inactivation of chemo-
tactic factor, leukotriene B4, which is associated with insulin
resistance and obesity [51, 52].

Fine-mapping of known fasting insulin and fasting glucose
PPP1R3B andGCK loci containing novel independent second-
ary signals yielded results consistent with our stepwise condi-
tional analyses. Multiple CSs, including those containing our
identified secondary signals, were predicted for each locus.
PPP1R3B contributes to insulin signalling through an insulin–



Akt–protein phosphatase 1 regulatory subunit 3G (PPP1R3G)–
protein phosphatase 1 regulatory subunit 3B (PPP1R3B) regu-
latory axis, in which PPP1R3B binds to dephosphorylated
glycogen synthase (GS), thus relaying insulin signals for hepat-
ic glycogen synthesis [53]. Rare PPP1R3B missense variants
may increase the risk of type 2 diabetes, possibly through
altered GS function and altered lipid metabolism [54]. GCK
encodes the enzyme glucokinase, which acts to maintain
glucose homeostasis and has been previously associated with
fasting glucose and type 2 diabetes [5, 11, 14, 55–58]. Specific
GCK mutations also cause Mendelian disease phenotypes
including MODY2 and permanent neonatal diabetes mellitus
(PNDM) [59–61]. Continuing to identify the spectrum of natu-
ral variation across populations of genes that alter risk for
glycaemic traits and type 2 diabetes will enable improvements
in risk prediction models for diverse populations.

Strengths of this study include the large study size and
representation of multiple ancestrally, ethnically and
racially diverse populations, including HA and AA popu-
lations, which shoulder a large burden of hyperglycaemia
and type 2 diabetes in the USA and historically have been
understudied in genetic epidemiology research. However,
because the greatest proportion of participants were from
HA, AA and EA populations, this study was limited in its
ability to detect associations specific to East Asian, South
Asian, HI and NAm populations. Additionally, our
transethnic fine-mapping approach utilised a combined
ancestry LD matrix that was constructed by computing
population-specific LD matrices and subsequently
weighting by population sample size. This weighted LD
matrix approach is limited by the fact that it ‘averages’
LD patterns across populations, thus potentially missing
ancestry-specific LD differences. Nevertheless, we applied
this approach because it accounts for potentially more than
two causal variants at a given loci. Developing computa-
tionally scalable fine-mapping methods that leverage
ancestry-specific LD patterns while accounting for more
than two causal variants is an area of active research.

Furthermore, only the fasting insulin association at the
PTEN locus replicated in a transethnic meta-analysis of sever-
al multi-ethnic studies, although both the VEGFA andCASC8/
CASC21 loci showed suggestive significance. Our inability to
replicate several identified loci likely reflects the increasing
limitations of replication in large-scale ‘mega-biobank’ stud-
ies, since meta-analysis of multiple small independent repli-
cation studies, as performed here, may be underpowered [62].
Furthermore, replicating rare variants like the AA-specific
LRRC37A5P variant is a known challenge, especially since
rare variants tend to be population-specific [63]. To further
interrogate rare loci identified in populations thus far under-
represented in GWAS, there must be a continued effort to
increase the ancestral diversity of the populations studied in
GWAS and all biomedical research.

In summary, this study of glycaemic traits in the diverse
PAGE Study identified three novel fasting insulin loci: one
AA-specific rare fasting glucose locus; and two novel inde-
pendent secondary signals at known fasting glucose and
fasting insulin loci. These findings reinforce the need to
conduct genetic association studies in participants of diverse
backgrounds to yield new insights into the genetics of
glycaemic traits.

Supplementary Information The online version contains peer-reviewed
but unedited supplementary material available at https://doi.org/10.1007/
s00125-021-05635-9.
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