

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Managing Space Requirements of New Buildings Using Linked Building Data
Technologies

Rasmussen, Mads Holten; Hviid, Christian Anker; Karlshøj, Jan; Bonduel, M.

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Rasmussen, M. H., Hviid, C. A., Karlshøj, J., & Bonduel, M. (2018). Managing Space Requirements of New
Buildings Using Linked Building Data Technologies. Paper presented at 12th European Conference on Product
and Process Modelling, København, Denmark.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/189888847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/managing-space-requirements-of-new-buildings-using-linked-building-data-technologies(a3cdbf27-42f9-4c65-b6de-8df430a730ea).html

1 INTRODUCTION

When buying a product you can rightly expect it to
correspond to the technical specifications on which
the purchase was originally based. When buying a
building, however, the reality is unfortunately not
always so (Kiviniemi 2005). Bertelsen (2003) de-
scribes construction as a complex system because of
three main characteristics: (1) autonomous agents (2)
undefined values and (3) non-linearity. Delivering a
complete product specification in the form of a
building program at day 1 is nearly impossible as
everyone gains knowledge and insights as the design
evolves, and as a result, the building program itself
cannot be static during the design. The documenta-
tion and handling of it, therefore, needs to be dynam-
ic, which is unfortunately typically not the case
(Kiviniemi 2005). The majority of building design
processes are today characterized by manual infor-
mation extraction from static documents, and as the
design progresses it becomes a cumbersome task for
the project participants to keep track of, and meet the
evolving client requirements. Because of the pre-
dominantly manual information handling, the quality
of information exchange between project stakehold-
ers is furthermore highly determined by the social
capabilities and communicative skills of the individ-
ual practitioners (Bendixen 2007). This is a chal-

lenge that the methodology of Building Information
Modelling (BIM) will hopefully remedy over time.
However, unfortunately the BIM authoring tools of
today are not delivering satisfactory interoperability,
and data is therefore often trapped in data silos
(Terkaj 2017).

In this article, we first provide a brief overview of
existing software and data modelling approaches that
focus on building requirements specification. We
then argue why we believe semantic web technolo-
gies can possibly provide the means to overcome
current challenges when dealing with the dynamic
behaviour of building requirements. Based on
knowledge manually deduced from existing docu-
ment-based building programs and discussions with
practitioners in the consulting engineering company,
Niras, we have defined a set of competency ques-
tions. These were used as constraints for what the
data model should be capable of. The model was de-
veloped accordingly, chiefly by using terminology
defined in already existing and widely adopted on-
tologies. Lastly, we developed a set of tests to evalu-
ate the modelling approach on the Common BIM
Model “Duplex Apartment”1. The dataset was estab-
lished partly by manually defining requirements as

1 https://www.nibs.org/?page=bsa_commonbimfiles#project1

Managing Space Requirements of New Buildings Using Linked Building
Data Technologies

M.H. Rasmussen, C.A. Hviid & J. Karlshøj
Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

M. Bonduel
Department of Civil Engineering, Technology Cluster Construction, KU Leuven, Ghent, Belgium

ABSTRACT: Any stakeholder operating in the AEC industry knows that designing a building is a complex
and highly iterative task. The project evolves over time and changes happen rapidly, meaning that design re-
quirements, as well as solutions (often as a consequence), must undergo revision. Since building requirements
are, however, documented and handled in a predominantly manual manner, the work processes are not aligned
with the dynamic nature of the projects. Tracking and acting upon changes is a manual, and therefore an error-
prone and labour intensive task. In this article, we suggest a generic method for working with the concept of
spaces at different abstraction levels in order to compare requirements with actual properties in a non-static
manner using semantic web technologies, primarily developed by the W3C Linked Building Data (LBD)
Community Group. The generic modelling approach has the potential of also being applied to other concepts
than building spaces.

https://www.nibs.org/?page=bsa_commonbimfiles#project1

an RDF-graph (Resource Description Framework)
following the suggested modelling approach, and
partly by using a custom developed exporter for the
BIM authoring tool, Revit2. The latter establishes an
RDF-graph using ontologies provided by the World
Wide Web Consortium Linked Building Data Com-
munity Group (W3C LBD-CG).

1.1 Open standards
The effort of storing knowledge in a construction
project, including the information exchange between
its stakeholders, has been addressed by the build-
ingSMART organisation. With standards such as In-
dustry Foundation Classes (IFC) (Liebich and Wix
1999), Information Delivery Manuals (IDM) and
Model View Definitions (MVD) they deliver a solid
framework for information exchange and storage.

The W3C also has made efforts to standardize in-
formation exchange using semantic web technolo-
gies such as the Web Ontology Language (OWL) to
construct formal vocabularies to describe a certain
domain of interest. The scope of these technologies
is not limited to the AEC industry alone, and there-
fore researchers and practitioners from a wide varie-
ty of domains are contributing to their continuous
development.

One main difference between the above two

methodologies is that OWL relies on an Open World
Assumption (OWA), meaning that the schema can
evolve over time to include concepts not initially
thought of. This is quite different from typical data-
base systems that depend on a Closed World As-
sumption (CWA) for defining schemas, such as IFC.
Another benefit is that the full dataset does not need
to be available at one location but can be combined
with other datasets as needed, being both Linked
Open Datasets (LOD) available online (material da-
ta, weather data, geographical data etc.) and private
datasets, possibly hosted by other project stakehold-
ers. Owners of such private datasets can restrict the
access to specific partners.

The W3C Resource Description Framework

(RDF) standard is used to describe Linked Data in a
directed graph consisting of a collection of triples. A
triple has three parts: a node (the subject), an edge
(the predicate) and another node (the object) con-
nected to the first node through the predicate-edge.
All sub-elements of a triple are made globally unique

2 https://github.com/MadsHolten/revit-bot-exporter

by denoting them with a Uniform Resource Identifi-
er (URI) except for objects that are literal values
such as strings, integers, Booleans etc. The datatype
of such literals are also described with a URI, and is
often defined in an ontology version of the Extensi-
ble Markup Language (XML) Schema Definition
(XSD). Both the terminology layer (TBox) - includ-
ing semantics for classes and properties, and the data
layer (ABox), covering individual instances and their
interrelations, are described using RDF. The W3C
encourages developers to make their ontologies pub-
licly available so that useful ontology-related infor-
mation can be retrieved from the URI. To continue,
the W3C recommends that terms from widely adopt-
ed ontologies are used to explicitly describe the data
layer.

An RDF graph is traversed using the SPARQL
Protocol and RDF Query Language (SPARQL) and
if it is described using widely adopted ontologies it
is possible to structure generic, globally applicable
queries to deduce knowledge. The semantics de-
scribed in the TBox also allow reasoning engines to
deduce implicit knowledge from what is explicitly
defined in the ABox. A simple example: If chair is
a sub-class of furniture (TBox), then all instances
of chair are also instances of furniture (ABox).

1.2 Cloud-based BIM solutions
Although building programs are typically defined in
static documents (Word, PDF) there are a few cloud-
based BIM applications for building requirements
management on the market. They typically consist of
a user interface (UI) that enables the user to do cre-
ate, read, update and delete (CRUD) operations on
requirements stored in a central database along with
a communication link to native BIM authoring tools.
Since each internal database has a closed proprietary
schema rather than a schema defined according to
the previously described open standards, interlinking
the requirements to information that exists outside
the application is not easily accomplished. Addition-
ally, migrating from one tool to another is seen as a
cumbersome task. Some applications do offer a
REST (representational state transfer) API (applica-
tion programming interface) providing a machine-
accessible interface to the internal data model. How-
ever, the design of this interface is also following a
proprietary schema and therefore a deep understand-
ing of this schema is a prerequisite for interpreting
and using the data in other applications.

Onuma and dRofus are examples of BIM applica-
tions for requirements management that offer a

https://github.com/MadsHolten/revit-bot-exporter

REST API to interact with the data model3,4, and
they use XML and JavaScript Object Notation
(JSON) respectively as data format. Both APIs offer
only limited interaction with the data model and alt-
hough accessible from outside, they are tightly cou-
pled to their native data models.
 The SPARQL Protocol (Feigenbaum et al. 2013)
and SPARQL Graph Store HTTP protocol
(Chimezie Ogbuji 2013) are W3C recommendations
specifying how to make an RDF-graph available
through a REST architecture. Accessing the graph is
achieved by sending a SPARQL query to a URI
hosting a SPARQL endpoint, and this provides an
interface for clients to do CRUD operations on the
dataset. A cloud-based BIM tool using the W3C
open standards to describe the schema could host a
SPARQL endpoint in order to allow clients to access
the data model using standardised SPARQL queries,
but to our knowledge, no such tool currently exists.

1.3 Linked Building Data
Research has provided us with several examples of
how semantic web technologies can be used to en-
hance data handling in the AEC industry. The typical
research contribution is an ontology which describes
a subset of the construction domain with a distinct
scope such as smart homes and sensor data or even
the construction domain as a whole. Pauwels &
Terkaj (2016) proposed ifcOWL as the OWL-based
counterpart for the IFC schema and probably the
most widely adopted ontology in the AEC domain.
 It has later been argued that this quite literal con-
version of the IFC schema is not appropriate as it (1)
contains artefacts from the EXPRESS schema from
which it originates making queries less logic and (2)
describes too wide a scope, thereby violating the
W3C best practice of omitting redundancy and mak-
ing it hard to get familiarized with (Pauwels &
Roxin 2016; Rasmussen et al. 2017a).

 Another, more modular approach for building-
related ontologies is suggested by the W3C LBD-
CG. A minimal ontology, the Building Topology
Ontology (BOT) (Rasmussen et al. 2017a) describes
the main concepts of a building and thereby serves
as an extensible core for describing any concept in
its context of a building. Another ontology, PROPS,
describes building-related properties and is at the
time of writing a conversion of the properties con-

3 http://www.onuma-bim.com/platform/api
4 https://wiki.drofus.com/display/DV/REST+API

tained in the IFC4 schema5. The conversion ap-
proach is also used in the PRODUCT ontology
which describes building-related products. Finally,
the Ontology for Property Management (OPM) ex-
tends concepts from the Smart Energy-Aware Sys-
tems (SEAS) ontology to provide the means to de-
scribe property reliability as well as property
changes over time using property states.

Both the IFCtoLBD-converter6 (Bonduel et al.
2018) and an exporter for Revit7 (Rasmussen et al.
2017b) generate LBD compliant RDF triples from
conventional BIM models.

In this study we have used and extended a set of
widely adopted web ontologies for property handling
(schema.org/goodrelations), provenance data
(PROV-O), literal units (Unified Code for Units of
Measure (UCUM) (Lefrançois 2018)) along with the
earlier mentioned LBD ontologies. Using these on-
tologies in combination with OWL description
logics, we illustrate an approach for specifying pro-
ject specific space classes that explicitly state the
client’s requirements. We further show how the ar-
chitectural spaces can automatically inherit require-
ments based on the class they are assigned to using
standard OWL reasoning engines. Queries to com-
pare and evaluate requirements to actual properties
of the space instances are further illustrated and a
simple use case, is presented to simulate both re-
quirement and property changes and the handling of
these.

2 REQUIREMENTS MODELLING

In this section we illustrate how concepts defined in
the BOT, OPM and schema.org ontologies can be
used to model space requirements. Initially, various
client requirements specifications for construction
projects in which Danish consulting company Niras
has been involved, were reviewed. In these specifi-
cations, it is common practice to specify space re-
quirements at type level rather than at instance level.

IFC and various BIM authoring tools use the con-
cept of types and include a mechanism for inheriting
properties of a type to instances belonging to that
type. Instances can further extend the set of proper-
ties at an individual level and properties can even be
overridden (Borgo et al. 2014). It is clear that the in-
stances belong at ABox level, but the concepts of

5 https://github.com/w3c-lbd-cg/props/blob/master/IFC4-
output.ttl
6 https://github.com/jyrkioraskari/IFCtoLBD
7 https://github.com/MadsHolten/revit-bot-exporter

http://www.onuma-bim.com/platform/api
https://wiki.drofus.com/display/DV/REST+API
https://github.com/w3c-lbd-cg/props/blob/master/IFC4-
https://github.com/jyrkioraskari/IFCtoLBD
https://github.com/MadsHolten/revit-bot-exporter

space and object types are less obvious. In BIM
tools, space and object type instances are defined at
the data layer rather than the schema layer, but from
an ontology engineering perspective, it would argua-
bly be more correct to consider the type instances
themselves at schema level.

In the following section, we will investigate a
TBox modelling approach of space types that must
be capable of providing answers to the following
competency questions:

− CQ1: How to model a space type?
− CQ2: How to assign a quantitative requirement to

a space type?
− CQ3: How to state that a designed space instance

matches a space type of the client’s requirements
specification?

− CQ4: How to check if a property that also exists
as a requirement is fulfilled by the architectural
design?

− CQ5: How to check an adjacency or quantity re-
quirement?

− CQ6: How to update a space type and its assigned
requirements?

2.1 CQ1: Modelling a space type
Modelling a space type is achieved by defining a
project-specific extension of BOT, in this case in the
namespace of the building client. In Figure 1 the
class client:spacetype_bathroom1 is defined as
a sub-class of bot:Space meaning that any instance
of the class will be classified as a bot:Space. The
rdfs:label and rdfs:comment are widely adopted
predicates from the RDF Schema (RDFS) that pro-
vide a human-readable specification of the class. In
this example, in Danish and English language.

client:spacetype_bathroom1

bot:Space

rdfs:subClassOf

TBox

“Bathroom type 1”@en

“Badeværelse
type 1”@da

“Large bathroom”@en

rdfs:label rdfs:comment

Figure 1. Modelling a space type with BOT.

2.2 CQ2: Assigning a quantitative requirement
In order to meet the demands for modelling a space
requirement, it should be possible to capture the fol-
lowing information:

− Range, (minimum and maximum) or specific
value to be matched

− Quantitative unit of the value
− Property changes over time (deleted, modified)

OWL includes logics to describe property re-
strictions for classes. For example, it is possible to
describe that :BlueCars is a sub-class of all cars
that have a blue color, which entails that every in-
stance of the :BlueCars class will consequently be
blue. Figure 2 illustrates how an owl:Restriction
can be used to describe that all instances of cli-
ent:spacetype_bathroom1 have a props:area
with the value client:property_001. This objec-
tified property belongs to the ABox of the client’s
dataset, which allows it to evolve over time.
 Rasmussen et al. (2018) describe three levels of
complexity for assigning properties to some feature
of interest (FoI). Level 3, the most expressive form,
satisfies the demand of allowing property changes
over time and is therefore used to model space re-
quirements. Figure 2 illustrates how the property has
a property state (client:state_p001_001) as-
signed. This state is currently classified as the
opm:CurrentPropertyState, which indicates that
it is the most recent state of the property but this
might change over time as the client requirements
are revised. A new class opm:Required which we
suggest to implement as an extension of OPM is
used to specify that the state is a requirement rather
than a designed property. A value range is specified
using properties defined in schema.org and the gen-
eration time is captured using PROV-O. The unit is
given as part of the value string using a custom
datatype based on UCUM. Further metadata such as
who created the property state for which reason can
also be attached.

ABox

TBox

schema:maxValue
schema:minValue

prov:generatedAtTime“2018-02-21T09:23:50.261Z”^^xsd:dateTime

rdfs:subClassOf

owl:hasValue

opm:hasPropertyState

“Area requirement”

owl:onPropertyrdf:type

rdf:type

rdf:type

rdfs:comment

owl:Restriction

client:property_001

client:state_p001_001

client:spacetype_bathroom1

props:area

opm:CurrentPropertyState

opm:Required

“8 m2”^^cdt:area

“6 m2”^^cdt:area

Figure 2. Assigning a requirement using (Rasmussen et al.
2018) Level 3.

2.3 CQ3: Mapping designed space instances to
spaces requested by the client

At one point, as the architectural design progresses,
the architect’s dataset will hold a number of de-
signed spaces that should match the space types re-
quired by the client. At this point, the architectural
spaces are geometrically defined, and therefore they
have an actual area.

Mapping a designed space to a client space type is
handled by stating that the designed space is an in-
stance of the specific space type class. Figure 3 illus-
trates how properties of the client space type (cli-
ent:spacetype_bathroom1) are inherited to all
instances of this class. In this example, spaces
inst:room123 and inst:room213 both inherit
client:property_001 (and its property state) as
the value for property props:area.

ABox
TBox

inst:room213inst:room123

client:spacetype_bathroom1

rdf:type rdf:type

client:property_001
props:area props:area

Figure 3. Two designed spaces are classified as client:
spacetype_bathroom1. Therefore the properties (requirements)
of the client space type are inherited by the designed spaces.

2.4 CQ4: Checking that a requirement is fulfilled
When the same space property exists both as a re-
quirement and a designed property it is possible to
do a comparison in order to check if the requirement
is met. Figure 4 illustrates inst:room123 which has
the property props:area assigned twice. Explicitly
as a result of its geometry and implicitly as a re-
quirement inherited by the mechanism described in
Figure 3. Performing the comparison is possible by
traversing the graph using a SPARQL query.

ABox
TBox

Designed PropertyRequirement

inst:room123
props:area props:area

opm:CurrentStateopm:CurrentState

opm:has
PropertyState

 opm:has
PropertyState

schema:value

rdf:typerdf:type
rdf:type

“5.4 m2”^^cdt:area“8 m2”^^cdt:area“6 m2”^^cdt:area

opm:Required

schema:minValue

schema:maxValue

Figure 4. Requirement vs. property.

Listing 1 shows a SPARQL query to retrieve all
violations of the props:area requirement in the
model, when both the requirements and designed
properties are all in one database. The query is struc-
tured as a graph traversal which operates by match-
ing the defined patterns. The first triple pattern maps
anything that is an instance of bot:Space to the var-
iable ?space. The next pattern is a sub-query which
is used to get data from the state of props:area that
is classified as opm:Required. The variable ?space
is used to match the same space, and the URI of the
property object is mapped to variable ?reqURI. All
states of the property are assigned to variable
?reqState but the next two triples limit the result to
only include the one state which is both classified as
opm:Required and opm:CurrentPropertyState.

Since a requirement can be specified either as an ex-
act match or as a range, each of the schema:value
patterns are optional.

A similar pattern is used to get the actual property
and by using a filter it is ensured that the require-
ment is not assigned to variable ?propURI (since
both match the pattern). The value of ?propURI’s
latest state is assigned to variable ?val and com-
pared to the required range to check if it is violated.
A result is returned only if the requirement is violat-
ed.

Replacing ?space with inst:room123 or the URI
of any other space will return violated requirements
for this particular space and this approach can be
used to switch any variable with a constant.

Listing 1. SPARQL query to retrieve violated requirements
SELECT *
WHERE {
 # Must be a space
 ?space rdf:type bot:Space .

 # Sub-query to get requirement
 {
 SELECT ?space ?reqURI ?reqVal ?reqMax ?reqMin
 WHERE {
 ?space props:area ?reqURI .
 ?reqURI opm:hasPropertyState ?reqState .
 ?reqState rdf:type opm:Required .
 ?reqState rdf:type opm:CurrentPropertyState .
 OPTIONAL {?reqState schema:value ?reqVal}
 OPTIONAL {?reqState schema:minValue ?reqMin}
 OPTIONAL {?reqState schema:maxValue ?reqMax}
 }
 }

 # Get property
 ?space props:area ?propURI .
 FILTER(?propURI != ?reqURI) # Disjoint from req
 ?propURI opm:hasPropertyState ?propState .
 ?propState rdf:type opm:CurrentPropertyState .
 ?propState schema:value ?val

 # Compare requirements to actual value
 BIND(?value != ?reqVal AS ?matchViolated)
 BIND(?value < ?reqMin AS ?minViolated)
 BIND(?value > ?reqMax AS ?maxViolated)

 # Show only results where a requirement is
 # violated
 FILTER(?matchViolated || ?minViolated ||
 ?maxViolated)

2.5 CQ5: Adjacency and quantity requirements
Specifying adjacency or quantity requirements is not
different from any other requirement. However, spe-
cial queries must be used to check whether these are
violated. The same is the case for other requirements
such as zone or element containment.
Checking if the required quantity of spaces of a cer-
tain space type is met, is accomplished by the query
shown in Listing 2. Accessing the requirement can

be done in the main query since it is not necessary to
distinguish between two properties of the same kind,
but in order to count the number of space type oc-
curences, a sub-query is necessary. Listing 2 shows
the optional sub-query to count the number of de-
signed space instances per client space type. Each
space type is assigned a unique ?reqURI for the
props:quantity property requirement, so this can
be used for the grouping. This query is executed be-
fore continuing to the next step where requirement
props:quantity is compared to ?value.

Listing 2. Sub-query to count number of designed space in-
stances that have a specific quantity requirement assigned.
{
 SELECT ?reqURI (COUNT(?reqURI) AS ?qty)
 WHERE {
 ?space props:quantity ?reqURI .
 } GROUP BY ?reqURI
}

 Finding violated adjacency requirements is like-
wise handled by first getting the requirement (like il-
lustrated in Listing 1). Also in this case it can be
done in the main query, and this time it is only nec-
essary to get the schema:value and bind it to
?reqVal. By using the MINUS clause a result is on-
ly returned if the space does not have an adjacency
to a designed space defined as an instance of the re-
quired client space type.

Listing 3. SPARQL query to retrieve violated adjacency re-
quirements.
Return result if the space does not have an
adjacent space of the required type
MINUS {
 ?space bot:adjacentZone ?adjSpace .
 ?adjSpace rdf:type ?reqVal .
}

2.6 CQ6: Performing updates
Changes to property requirements are according to
Rasmussen et al. (2018) handled by creating a new
current state and removing the opm:Current-
PropertyState from the evaluation that was previ-
ously defined as the current state. This can be
achieved with an update query which can be gener-
ated using the OPM query generator JavaScript li-
brary8. Since all the queries explicitly look for the
current state of both properties and requirements, the
evaluations will automatically reflect the changes.

8 https://www.npmjs.com/package/opm-qg

3 USE CASE

To illustrate a possible workflow for modelling,
mapping and evaluating requirements, a simple use
case was set up. The Common BIM Model “Duplex
Apartment” was used as a reference, and the Revit
BOT exporter9 plugin (Rasmussen et al. 2017b) was
extended to include the concept of space types and
OPM property states. The exporter was used to ex-
port the architectural model in LBD format. The
steps to establish the dataset were the following:

1) Define client requirements in RDF. (This step

should preferably be accomplished through a UI)
2) Run BOT exporter in Revit to:

− Create and assign a Revit URI parameter to
spaces and elements

− Create Revit SpaceTypeURI parameter
− Export BOT relationships and properties to

RDF
3) Specify space type URI corresponding to the URI

used for the client space type and re-export tri-
ples (Figure 5)

4) Use Dynamo script to export zone adjacencies to
RDF. This functionality will be implemented in
the exporter plugin in the future

Figure 5. Revit shared parameters for URI and SpaceTypeURI.

 Once the dataset was available it was loaded into a
triplestore in order to do the checks described in the
previous section. The checking is implemented in a
JavaScript based testing tool that is available
online10, while the results are presented here.

3.1 Testing property requirements
All space types in the test have an area requirement
specified. In general, the areas are fulfilled by the
designed spaces, except for inst:spacetype_bed-
room and inst:spacetype_bathroom1. Once the
dataset is loaded into the triplestore, the tool per-
forms the query from Listing 1 to find area require-
ment violations. Listing 4 shows the results.

Listing 4. Test tool output for violated property requirements.
Numbers in parenthesis are (actual/range).
- 'Bathroom 2 B204' violates req. (5.44/(6-))
- 'Bathroom 2 A204' violates req. (5.42/(6-))

9 https://github.com/MadsHolten/revit-bot-exporter
10 www.student.dtu.dk/~mhoras/ecppm2018/test.zip

https://www.npmjs.com/package/opm-qg
https://github.com/MadsHolten/revit-bot-exporter
www.student.dtu.dk/~mhoras/ecppm2018/test.zip

- 'Bedroom 1 B202' violates req. (26.12/(20-25))
- 'Bedroom 2 B203' violates req. (26.18/(20-25))
- 'Bedroom 2 A203' violates req. (26.18/(20-25))
- 'Bedroom 1 A202' violates req. (26.12/(20-25))

3.2 Checking quantity of spaces
Some space types have a requirement for quantity of
designed space instances, and for inst:space-
type_living_room a requirement of seven occur-
rences is specified, which is not fulfilled in the case
of the Duplex house model. A query to group the
rooms into apartments based on the room numbers
(which are suffixed with either A or B) was imple-
mented in the test tool. The query from Listing 2 was
modified slightly in order to accommodate this be-
fore counting the number of designed space occur-
rences for each space type. The result of this query
was, correctly, that the requirement was not met as
there is only one living room per apartment in the
Duplex model.

Listing 5. Test tool output for violated quantity requirements.
Numbers in parentheses are (actual/range).
- 'Living Room A102' (1/7)
- 'Living Room B102' (1/7)

3.3 Testing adjacency requirements
Two adjacency requirements were given as a client
requirement:

− spacetype_living_room/spacetype_kitchen
− spacetype_bedroom/spacetype_bathroom1

The query from Listing 3 revealed that requirement 2
is only fulfilled by one of the bedrooms in each ap-
partment, which is correct.

3.4 Changing requirements
By performing four SPARQL update queries, three
client requirements were revised and a new one was
added:
− Area requirement for spacetype_bathroom1

relaxed from 6 m2 to 5 m2.
− props:quantity for spacetype_living_room

relaxed from 7 to 1.
− New space type spacetype_bedroom2 with

props:quantity requirement of 1 and area re-
quirement of minimum 9 m2 added.

− Adjacency requirement between spacetype_-
bedroom and spacetype_bathroom1 deleted by
appending new opm:PropertyState of class
opm:Deleted.

Re-running the tests from section 3.1 and 3.2 now
concludes that the area requirements of 'Bathroom
2 A204' and 'Bathroom 2 B204', the props:
quantity requirement for spacetype_living_
room and the adjacency requirements for 'Bedroom
1 A202' and 'Bedroom 1 B202' are no longer vi-
olated.

The requirements for the new bedroom type can-
not be evaluated with the queries presented in Sec-
tion 2 since the class is not assigned to any spaces. In
order to check for required spaces which have not
been instantiated, one must do a query starting from
the client space type itself, and even though this is
less intuitive, it is possible. Listing 6 shows a query
pattern to retrieve a space type which has a quantity
requirement assigned, but is not instantiated.

Listing 6. Find space types with a quantity requirement but no
instances.
GET QUANTITY REQUIREMENT
?spaceType rdfs:subClassOf [
 rdf:type owl:Restriction ;
 owl:onProperty props:quantity ;
 owl:hasValue ?reqURI
] .
MINUS { ?space a ?spaceType }

Since the initial requirements are all available in the
model, the architect is able to track the changes and
relate a property compliance check to a certain state
of a requirement.

4 CONCLUSIONS AND FUTURE WORK

The main outcome of this work is the illustration of
how to use semantic web technologies and existing
ontologies, BOT in particular, to establish a
knowledge model of requirements for spaces of a
new building. The model illustrates an approach to
describe space requirements at type level in a way
that utilizes OWL reasoning capabilities thereby
providing best practice examples of how to extend
BOT at project level.

In the use case presented in this work, designed
architectural spaces inherit properties of the space
types described by the client. The same approach
could be used for (1) other features of interest such
as building elements or the building as a whole or
(2) other generalisations such as an automation con-
trol strategy. In the use case, the requirements were
modelled manually, but it is obviously not practical
for practitioners to do this, so some CRUD applica-
tion with a user-friendly UI should be developed.

Another interesting use case to investigate is de-
rived requirements. Specific requirements such as
minimum and maximum temperature, fresh air sup-
ply etc. are a result of the more general requirement;
the desired indoor climate class (according to
EN15251) and can be deduced by taking into ac-
count properties of the users of the space (ie. activity
level, clothing). The specific indoor climate re-
quirements set the constraints for the technical sys-
tems to be designed by the HVAC engineer, and
modelling these interdependencies could potentially
provide a valuable tool for design change conse-
quence analysis.

 In the use case, all data was stored in the same tri-
plestore, but in a real world implementation the cli-
ent would probably make the project specific classes
and associated requirements available to project par-
ticipants as a SPARQL-endpoint hosted on a sepa-
rate server or as part of a Common Data Environ-
ment (CDE). Further research in how such an
implementation could be configured is a separate re-
search topic.
 The use of OPM enables documentation of design
and requirement changes over time, and in the use
case it was used to revise requirements. Inferring in-
to the graph that a requirements check was made
based on a specific state of a requirement could be
used for documentation purposes, but this was out of
the scope for this work. The legal aspects of being
able to document design changes, potentially in
combination with block chain technology could en-
tail great benefits and composes a separate research
topic.

In summary, this work illustrates a data modelling
approach that provides all the means to overcome
current challenges when dealing with evolving de-
sign data and requirements in the complex construc-
tion industry. It is our belief that future BIM tools
can benefit from adopting these technologies and
methodologies.

5 ACKNOWLEDGEMENTS

Special thanks to the NIRAS ALECTIA Foundation
and Innovation Fund Denmark for funding.

6 REFERENCES

Bendixen, M. 2007 The challenges of consulting engineers.
PhD Thesis. Kgs. Lyngby: Technical University of
Denmark.

Bertelsen, S. 2003 Construction as a Complex System.
Proceedings of IGLC 11(February):143–68.

Bonduel, M., Oraskari, J. & Pauwels, P. 2018 The IFC to
Linked Building Data Converter - Current Status. 6th
Linked Data in Architecture and Construction Workshop
(LDAC).

Borgo, S. et al. 2014 Towards an Ontological Grounding of
IFC 6th Workshop Formal Ontologies Meet Industry,
Joint Ontology Workshops, CEUR.

Chimezie O. 2013 SPARQL 1.1 Graph Store HTTP Protocol.
Retrieved May 15, 2018
(https://www.w3.org/TR/sparql11-http-rdf-update/).

Feigenbaum, L. et al. 2013 SPARQL 1.1 Protocol. Retrieved
May 15, 2018 (https://www.w3.org/TR/sparql11-
protocol/).

Kiviniemi, A. 2005 Requirements Management Interface to
Building Product Models PhD Thesis. Stanford
University.

Lefrançois, M. & Zimmermann, A. 2018 The unified code for
units of measure in RDF: cdt:ucum and other UCUM
datatypes Proceedings of the International Semantic Web
Conference (ISWC), demonstration paper, submitted.

Liebich, T. & Wix, J. 1999 Highlights of the Development
Process of Industry Foundation Classes. Proceedings of
the 1999 CIB W78 Conference.

Pauwels, P. & Roxin, A. 2016 SimpleBIM : From Full IfcOWL
Graphs to Simplified Building Graphs. European
Conference on Product and Process Modelling
(ECPPM).

Pauwels, P. & Terkaj, W. 2016. EXPRESS to OWL for
Construction Industry: Towards a Recommendable and
Usable IfcOWL Ontology. Automation in Construction
63:100–133. doi: 10.1016/j.autcon.2015.12.003.

Rasmussen, M. H. et al. 2017a Proposing a Central AEC
Ontology That Allows for Domain Specific Extensions.
Lean and Computing in Construction Congress - Volume
1: Proceedings of the Joint Conference on Computing in
Construction 237–44. doi: 10.24928/JC3-2017/0153.

Rasmussen, M. H., et al. 2017b Web - Based Topology Queries
on a BIM Model. 5th Linked Data in Architecture and
Construction (LDAC2017) Workshop. doi:
10.13140/RG.2.2.22298.95685.

Rasmussen, M. H. et al. 2018 OPM: An Ontology for
Describing Properties That Evolve over Time. 6th Linked
Data in Architecture and Construction Workshop
(LDAC), CEUR.

Terkaj, W. et al. 2017 Reusing Domain Ontologies in Linked
Building Data : The Case of Building Automation and
Control. 8th Workshop Formal Ontologies Meet Industry,
Joint Ontology Workshops, CEUR

https://www.w3.org/TR/sparql11-http-rdf-update/).
https://www.w3.org/TR/sparql11-

