8 research outputs found

    Reversible Manifestations of Extraparenchymal Neurocysticercosis

    Get PDF
    Movement disorders are uncommon manifestations of neurocysticercosis. When present, most are secondary to parenchymal lesions in the basal ganglia. Rarely, movement disorders can occur in racemose/extraparenchymal neurocysticercosis, an aggressive variant frequently associated with cerebrospinal fluid outflow obstruction and hydrocephalus. Appropriate treatment can reverse neurological manifestations

    Cortical Iron Disrupts Functional Connectivity Networks Supporting Working Memory Performance in Older Adults

    Get PDF
    Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imaging (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans were obtained to control for potential contributions of cerebral blood volume and structural brain images were used to control for contributions of brain volume. Task performance was positively correlated with strength of task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks supporting working memory and is associated with reduced working memory performance in older adults

    Enlarged Perivascular Spaces are Negatively Associated with Montreal Cognitive Assessment Scores in Older Adults

    Get PDF
    Emerging evidence suggests that enlarged perivascular spaces (ePVS) may be a clinically significant neuroimaging marker of global cognitive function related to cerebral small vessel disease (cSVD). We tested this possibility by assessing the relationship between ePVS and both a standardized measure of global cognitive function, the Montreal Cognitive Assessment (MoCA), and an established marker of cSVD, white matter hyperintensity volume (WMH) volume. One hundred and eleven community-dwelling older adults (56–86) underwent neuroimaging and MoCA testing. Quantification of region-specific ePVS burden was performed using a previously validated visual rating method and WMH volumes were computed using the standard ADNI pipeline. Separate linear regression models were run with ePVS as a predictor of MoCA scores and whole brain WMH volume. Results indicated a negative association between MoCA scores and both total ePVS counts (P ≤ 0.001) and centrum semiovale ePVS counts (P ≤ 0.001), after controlling for other relevant cSVD variables. Further, WMH volumes were positively associated with total ePVS (P = 0.010), basal ganglia ePVS (P ≤ 0.001), and centrum semiovale ePVS (P = 0.027). Our results suggest that ePVS burden, particularly in the centrum semiovale, may be a clinically significant neuroimaging marker of global cognitive dysfunction related to cSVD

    Peeking into the Black Box of Coregistration in Clinical fMRI: Which Registration Methods Are Used and How Well Do They Perform?

    No full text
    BACKGROUND AND PURPOSE: Interpretation of fMRI depends on accurate functional-to-structural alignment. This study explores registration methods used by FDA-approved software for clinical fMRI and aims to answer the following question: What is the degree of misalignment when registration is not performed, and how well do current registration methods perform? MATERIALS AND METHODS: This retrospective study of presurgical fMRI for brain tumors compares nonregistered images and 5 registration cost functions: Hellinger, mutual information, normalized mutual information, correlation ratio, and local Pearson correlation. To adjudicate the accuracy of coregistration, we edge-enhanced echo-planar maps and rated them for alignment with structural anatomy. Lesion-to-activation distances were measured to evaluate the effects of different cost functions. RESULTS: Transformation parameters were congruent among Hellinger, mutual information, normalized mutual information, and the correlation ratio but divergent from the local Pearson correlation. Edge-enhanced images validated the local Pearson correlation as the most accurate. Hellinger worsened misalignment in 59% of cases, primarily exaggerating the inferior translation; no cases were worsened by the local Pearson correlation. Three hundred twenty lesion-to-activation distances from 25 patients were analyzed among nonregistered images, Hellinger, and the local Pearson correlation. ANOVA analysis revealed significant differences in the coronal (P \u3c .001) and sagittal (P = .04) planes. If registration is not performed, 8% of cases may have a \u3e 3-mm discrepancy and up to a 5.6-mm lesion-to-activation distance difference. If a poor registration method is used, 23% of cases may have a \u3e 3-mm discrepancy and up to a 6.9-mm difference. CONCLUSIONS: The local Pearson correlation is a special-purpose cost function specifically designed for T2*-T1 coregistration and should be more widely incorporated into software tools as a better method for coregistration in clinical fMRI

    Dose Reduction While Preserving Diagnostic Quality in Head CT: Advancing the Application of Iterative Reconstruction Using a Live Animal Model

    No full text
    BACKGROUND AND PURPOSE: Iterative reconstruction has promise in lowering the radiation dose without compromising image quality, but its full potential has not yet been realized. While phantom studies cannot fully approximate the subjective effects on image quality, live animal models afford this assessment. We characterize dose reduction in head CT by applying advanced modeled iterative reconstruction (ADMIRE) in a live ovine model while evaluating preservation of gray-white matter detectability and image texture compared with filtered back-projection. MATERIALS AND METHODS: A live sheep was scanned on a Force CT scanner (Siemens) at 12 dose levels (82-982 effective mAs). Images were reconstructed with filtered back-projection and ADMIRE (strengths, 1-5). A total of 72 combinations (12 doses × 6 reconstructions) were evaluated qualitatively for resemblance to the reference image (highest dose with filtered back-projection) using 2 metrics: detectability of gray-white matter differentiation and noise-versus-smoothness in image texture. Quantitative analysis for noise, SNR, and contrast-to-noise was also performed across all dose-strength combinations. RESULTS: Both qualitative and quantitative results confirm that gray-white matter differentiation suffers at a lower dose but recovers when complemented by higher iterative reconstruction strength, and image texture acquires excessive smoothness with a higher iterative reconstruction strength but recovers when complemented by dose reduction. Image quality equivalent to the reference image is achieved by a 58% dose reduction with ADMIRE-5. CONCLUSIONS: An approximately 60% dose reduction may be possible while preserving diagnostic quality with the appropriate dose-strength combination. This in vivo study can serve as a useful guide for translating the full implementation of iterative reconstruction in clinical practice

    Surfer\u27s Myelopathy without Surfing: A Report of Two Pediatric Patients

    No full text
    INTRODUCTION: Surfer\u27s myelopathy (SM) is a rare disorder described in subjects presenting with acute paraparesis while learning how to surf. It is thought to be secondary to spinal ischemia triggered by hyperextension. Spinal magnetic resonance imaging (MRI) shows changes consistent with spinal cord ischemia on T2-weighted and diffusion-weighted imaging (DWI). CASE PRESENTATION: We report two patients who presented with acute onset paraplegia shortly after spinal hyperextension. They had no physical or radiological evidence of soft tissue injury. Their clinical and imaging findings closely resemble those described in SM. DISCUSSION: We propose the use of the term \u27acute hyperextension myelopathy\u27 to categorize patients with spinal cord infarction secondary to hyperextension. DWI sequencing on MRI should be considered to evaluate for early signs of spinal cord ischemia in these patients. Use of a broader term for diagnostic classification can help include patients with spinal cord infarction due to a common mechanism

    Prognostic relevance of gait-related cognitive functions for dementia conversion in amnestic mild cognitive impairment

    No full text
    Background: Increasing research suggests that gait abnormalities can be a risk factor for Alzheimer's Disease (AD). Notably, there is growing evidence highlighting this risk factor in individuals with amnestic Mild Cognitive Impairment (aMCI), however further studies are needed. The aim of this study is to analyze cognitive tests results and brain-related measures over time in aMCI and examine how the presence of gait abnormalities (neurological or orthopedic) or normal gait affects these trends. Additionally, we sought to assess the significance of gait and gait-related measures as prognostic indicators for the progression from aMCI to AD dementia, comparing those who converted to AD with those who remained with a stable aMCI diagnosis during the follow-up. Methods: Four hundred two individuals with aMCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were included. Robust linear mixed-effects models were used to study the impact of gait abnormalities on a comprehensive neuropsychological battery over 36 months while controlling for relevant medical variables at baseline. The impact of gait on brain measures was also investigated. Lastly, the Cox proportional-hazards model was used to explore the prognostic relevance of abnormal gait and neuropsychological associated tests. Results: While controlling for relevant covariates, we found that gait abnormalities led to a greater decline over time in attention (DSST) and global cognition (MMSE). Intriguingly, psychomotor speed (TMT-A) and divided attention (TMT-B) declined uniquely in the abnormal gait group. Conversely, specific AD global cognition tests (ADAS-13) and auditory-verbal memory (RAVLT immediate recall) declined over time independently of gait profile. All the other cognitive tests were not significantly affected by time or by gait profile. In addition, we found that ventricles size increased faster in the abnormal gait group compared to the normal gait group. In terms of prognosis, abnormal gait (HR = 1.7), MMSE (HR = 1.09), and DSST (HR = 1.03) covariates showed a higher impact on AD dementia conversion. Conclusions: The importance of the link between gait and related cognitive functions in terms of diagnosis, prognosis, and rehabilitation in aMCI is critical. We showed that in aMCI gait abnormalities lead to executive functions/attention deterioration and conversion to AD dementia
    corecore