2,470 research outputs found

    Stuttering Min oscillations within E. coli bacteria: A stochastic polymerization model

    Full text link
    We have developed a 3D off-lattice stochastic polymerization model to study subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding, and fragmentation of MinD filaments due to MinE. Each of processivity, protection, and fragmentation reduces stuttering, speeds oscillations, and reduces MinD filament lengths. Neither processivity or tip-protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations are consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization in experimental conditions.Comment: 21 pages, 7 figures, missing unit for k_f inserte

    Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins

    Full text link
    During division it is of primary importance for a cell to correctly determine the site of cleavage. The bacterium Escherichia coli divides in the center, producing two daughter cells of equal size. Selection of the center as the correct division site is in part achieved by the Min-proteins. They oscillate between the two cell poles and thereby prevent division at these locations. Here, a phenomenological description for these oscillations is presented, where lateral interactions between proteins on the cell membrane play a key role. Solutions to the dynamic equations are compared to experimental findings. In particular, the temporal period of the oscillations is measured as a function of the cell length and found to be compatible with the theoretical prediction.Comment: 17 pages, 5 figures. Submitted to Physical Biolog

    Predictions from a stochastic polymer model for the MinDE dynamics in E.coli

    Full text link
    The spatiotemporal oscillations of the Min proteins in the bacterium Escherichia coli play an important role in cell division. A number of different models have been proposed to explain the dynamics from the underlying biochemistry. Here, we extend a previously described discrete polymer model from a deterministic to a stochastic formulation. We express the stochastic evolution of the oscillatory system as a map from the probability distribution of maximum polymer length in one period of the oscillation to the probability distribution of maximum polymer length half a period later and solve for the fixed point of the map with a combined analytical and numerical technique. This solution gives a theoretical prediction of the distributions of both lengths of the polar MinD zones and periods of oscillations -- both of which are experimentally measurable. The model provides an interesting example of a stochastic hybrid system that is, in some limits, analytically tractable.Comment: 16 page

    A stochastic model of Min oscillations in Escherichia coli and Min protein segregation during cell division

    Full text link
    The Min system in Escherichia coli directs division to the centre of the cell through pole-to-pole oscillations of the MinCDE proteins. We present a one dimensional stochastic model of these oscillations which incorporates membrane polymerisation of MinD into linear chains. This model reproduces much of the observed phenomenology of the Min system, including pole-to-pole oscillations of the Min proteins. We then apply this model to investigate the Min system during cell division. Oscillations continue initially unaffected by the closing septum, before cutting off rapidly. The fractions of Min proteins in the daughter cells vary widely, from 50%-50% up to 85%-15% of the total from the parent cell, suggesting that there may be another mechanism for regulating these levels in vivo.Comment: 19 pages, 12 figures (25 figure files); published at http://www.iop.org/EJ/journal/physbi

    Inclusive versus Exclusive EM Processes in Relativistic Nuclear Systems

    Full text link
    Connections are explored between exclusive and inclusive electron scattering within the framework of the relativistic plane-wave impulse approximation, beginning with an analysis of the model-independent kinematical constraints to be found in the missing energy--missing momentum plane. From the interplay between these constraints and the spectral function basic features of the exclusive and inclusive nuclear responses are seen to arise. In particular, the responses of the relativistic Fermi gas and of a specific hybrid model with confined nucleons in the initial state are compared in this work. As expected, the exclusive responses are significantly different in the two models, whereas the inclusive ones are rather similar. By extending previous work on the relativistic Fermi gas, a reduced response is introduced for the hybrid model such that it fulfills the Coulomb and the higher-power energy-weighted sum rules. While incorporating specific classes of off-shellness for the struck nucleons, it is found that the reducing factor required is largely model-independent and, as such, yields a reduced response that is useful for extracting the Coulomb sum rule from experimental data. Finally, guided by the difference between the energy-weighted sum rules of the two models, a version of the relativistic Fermi gas is devised which has the 0th^{\rm th}, 1st^{\rm st} and 2nd^{\rm nd} moments of the charge response which agree rather well with those of the hybrid model: this version thus incorporates {\em a priori} the binding and confinement effects of the stuck nucleons while retaining the simplicity of the original Fermi gas.Comment: LaTex file with 15 .ps figure

    High-frequency performance of Schottky source/drain silicon pMOS devices

    Get PDF
    A radio-frequency performance of 85-nm gate-length p-type Schottky barrier (SB) with PtSi source/drain materials is investigated. The impact of silicidation annealing temperature on the high-frequency behavior of SB MOSFETs is analyzed using an extrinsic small-signal equivalent circuit. It is demonstrated that the current drive and the gate transconductance strongly depend on the silicidation anneal temperature, whereas the unity-gain cutoff frequency of the measured devices remains nearly unchanged

    Dynamic compartmentalization of bacteria: accurate division in E. coli

    Full text link
    Positioning of the midcell division plane within the bacterium E. coli is controlled by the min system of proteins: MinC, MinD and MinE. These proteins coherently oscillate from end to end of the bacterium. We present a reaction--diffusion model describing the diffusion of min proteins along the bacterium and their transfer between the cytoplasmic membrane and cytoplasm. Our model spontaneously generates protein oscillations in good agreement with experiments. We explore the oscillation stability, frequency and wavelength as a function of protein concentration and bacterial length.Comment: 4 pages, 4 figures, Latex2e, Revtex

    An Inner Gaseous Disk around the Herbig Be Star MWC 147

    Full text link
    We present high-spectral-resolution, optical spectra of the Herbig Be star MWC 147, in which we spectrally resolve several emission lines, including the [O I] lines at 6300 and 6363\deg. Their highly symmetric, double-peaked line profiles indicate that the emission originates in a rotating circumstellar disk. We deconvolve the Doppler-broadened [O I] emission lines to obtain a measure of emission as a function of distance from the central star. The resulting radial surface brightness profiles are in agreement with a disk structure consisting of a flat, inner, gaseous disk and a flared, outer, dust disk. The transition between these components at 2 to 3 AU corresponds to the estimated dust sublimation radius. The width of the double-peaked Mg II line at 4481\deg suggests that the inner disk extends to at least 0.10 AU, close to the corotation radius.Comment: accepted for ApJ Letters (Oct. 2010

    Measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons using recoil polarization in parallel kinematics

    Get PDF
    We propose a new method for measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons that exploits a symmetry relation for polarization observables in parallel kinematics. This polarization technique does not require variation of electron scattering kinematics and avoids the major sources of systematic errors in Rosenbluth separation.Comment: intended for Phys. Rev. C as a Brief Repor

    Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy

    Get PDF
    We report the discovery of low-amplitude gravity-mode oscillations in the massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space photometry and 5 months of high-resolution high signal-to-noise spectroscopy. The new data are of unprecedented quality and allowed to improve the orbital and fundamental parameters for this binary. The orbital solution was subtracted from the photometric data and led to the detection of periodic intrinsic variability with frequencies of which some are multiples of the orbital frequency and others are not. Spectral disentangling allowed the detection of line-profile variability in the primary. With our discovery of intrinsic variability interpreted as gravity mode oscillations, V380 Cyg becomes an important laboratory for future seismic tuning of the near-core physics in massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS Letter
    corecore