376 research outputs found
Cool Core Clusters from Cosmological Simulations
We present results obtained from a set of cosmological hydrodynamic
simulations of galaxy clusters, aimed at comparing predictions with
observational data on the diversity between cool-core (CC) and non-cool-core
(NCC) clusters. Our simulations include the effects of stellar and AGN feedback
and are based on an improved version of the smoothed particle hydrodynamics
code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical
instabilities by including a suitable artificial thermal diffusion. In this
Letter, we focus our analysis on the entropy profiles, the primary diagnostic
we used to classify the degree of cool-coreness of clusters, and on the iron
profiles. In keeping with observations, our simulated clusters display a
variety of behaviors in entropy profiles: they range from steadily decreasing
profiles at small radii, characteristic of cool-core systems, to nearly flat
core isentropic profiles, characteristic of non-cool-core systems. Using
observational criteria to distinguish between the two classes of objects, we
find that they occur in similar proportions in both simulations and in
observations. Furthermore, we also find that simulated cool-core clusters have
profiles of iron abundance that are steeper than those of NCC clusters, which
is also in agreement with observational results. We show that the capability of
our simulations to generate a realistic cool-core structure in the cluster
population is due to AGN feedback and artificial thermal diffusion: their
combined action allows us to naturally distribute the energy extracted from
super-massive black holes and to compensate for the radiative losses of
low-entropy gas with short cooling time residing in the cluster core.Comment: 6 pages, 4 figures, accepted in ApJL, v2 contains some modifications
on the text (results unchanged
Comparing the temperatures of galaxy clusters from hydro-N-body simulations to Chandra and XMM-Newton observations
Theoretical studies of the physical processes guiding the formation and
evolution of galaxies and galaxy clusters in the X-ray are mainly based on the
results of numerical hydrodynamical N-body simulations, which in turn are often
directly compared to X-ray observations. Although trivial in principle, these
comparisons are not always simple. We demonstrate that the projected
spectroscopic temperature of thermally complex clusters obtained from X-ray
observations is always lower than the emission-weighed temperature, which is
widely used in the analysis of numerical simulations. We show that this
temperature bias is mainly related to the fact that the emission-weighted
temperature does not reflect the actual spectral properties of the observed
source. This has important implications for the study of thermal structures in
clusters, especially when strong temperature gradients, like shock fronts, are
present. Because of this bias, in real observations shock fronts appear much
weaker than what is predicted by emission-weighted temperature maps, and may
even not be detected. This may explain why, although numerical simulations
predict that shock fronts are a quite common feature in clusters of galaxies,
to date there are very few observations of objects in which they are clearly
seen. To fix this problem we propose a new formula, the spectroscopic-like
temperature function, and show that, for temperature larger than 3 keV, it
approximates the spectroscopic temperature better than few per cent, making
simulations more directly comparable to observations.Comment: Submitted for publication in MNRAS; 15 pages, 10 color figures and 13
BW figures,mn2e.cls. High resolution figures available here:
http://people.roma2.infn.it/~mazzotta/preprints/mazzotta.pd
Spectroscopic-Like Temperature of Clusters of Galaxies and Cosmological Implications
The thermal properties of hydrodynamical simulations of galaxy clusters are
usually compared to observations by relying on the emission-weighted
temperature T_ew, instead of on the spectroscopic X-ray temperature T_spec,
which is obtained by actual observational data. Here we show that, if the
intra-cluster medium is thermally complex, T_ew fails at reproducing T_spec. We
propose a new formula, the spectroscopic-like temperature, T_sl, which
approximates T_spec better than a few per cent. By analyzing a set of
hydrodynamical simulations of galaxy clusters, we also find that T_sl is lower
than T_ew by 20-30 per cent. As a consequence, the normalization of the M-T
relation from the simulations is larger than the observed one by about 50 per
cent. If masses in simulated clusters are estimated by following the same
assumptions of hydrostatic equilibrium and beta-model gas density profile, as
often done for observed clusters, then the M-T relation decreases by about 40
per cent, and significantly reduces its scatter. Based on this result, we
conclude that using the observed M-T relation to infer the amplitude of the
power spectrum from the X--ray temperature function could bias low sigma_8 by
10-20 per cent. This may alleviate the tension between the value of sigma_8
inferred from the cluster number density and those from cosmic microwave
background and large scale structure.Comment: 6 pages, 3 figures, to appear in the proceedings of the Rencontres du
Vietnam "New Views on the Universe
Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution
We analyse cosmological hydrodynamical simulations of galaxy clusters to
study the X-ray scaling relations between total masses and observable
quantities such as X-ray luminosity, gas mass, X-ray temperature, and .
Three sets of simulations are performed with an improved version of the
smoothed particle hydrodynamics GADGET-3 code. These consider the following:
non-radiative gas, star formation and stellar feedback, and the addition of
feedback by active galactic nuclei (AGN). We select clusters with , mimicking the typical selection of
Sunyaev-Zeldovich samples. This permits to have a mass range large enough to
enable robust fitting of the relations even at . The results of the
analysis show a general agreement with observations. The values of the slope of
the mass-gas mass and mass-temperature relations at are 10 per cent lower
with respect to due to the applied mass selection, in the former case,
and to the effect of early merger in the latter. We investigate the impact of
the slope variation on the study of the evolution of the normalization. We
conclude that cosmological studies through scaling relations should be limited
to the redshift range , where we find that the slope, the scatter, and
the covariance matrix of the relations are stable. The scaling between mass and
is confirmed to be the most robust relation, being almost independent of
the gas physics. At higher redshifts, the scaling relations are sensitive to
the inclusion of AGNs which influences low-mass systems. The detailed study of
these objects will be crucial to evaluate the AGN effect on the ICM.Comment: 24 pages, 11 figures, 5 tables, replaced to match accepted versio
X-MAS2: Study Systematics on the ICM Metallicity Measurements
(Abridged)The X-ray measurements of the ICM metallicity are becoming more
frequent due to the availability of powerful X-ray telescope with excellent
spatial and spectral resolutions. The information which can be extracted from
the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with
respect to the Iron abundance is extremely important to better understand the
stellar formation and its evolutionary history. In this paper we investigate
possible source of bias connected to the plasma physics when recovering metal
abundances from X-ray spectra. To do this we analyze 6 simulated galaxy
clusters processed through the new version of our X-ray MAp Simulator, which
allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing
the spectroscopic results to the input values we find that: i) Fe is recovered
with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at
intermediate temperatures, however, we find a systematic overestimate which
depends on the number counts; ii) O is well recovered in cold clusters, while
in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a
weak line, the measurement of Mg is always difficult; despite of this, for cold
systems (T<2 keV) we do not find any systematic behavior, while for very hot
systems (T>5 keV) the spectroscopic measurement may be strongly overestimated
up to a factor of 4; iv) Si is well recovered for all the clusters in our
sample. We investigate in detail the nature of the systematic effects and
biases found. We conclude that they are mainly connected with the
multi-temperature nature of the projected observed spectra and to the intrinsic
limitation of the XMM-Newton EPIC spectral resolution that does not always
allow to disentangle among the emission lines produced by different elements.Comment: (e.g.: 17 pages, 8 figures, accepted for publication in the
Astrophysical Journal, updated discussion to match published version-new
section:6.3
Clusters of Galaxies: New Results from the CLEF Hydrodynamics Simulation
Preliminary results are presented from the CLEF hydrodynamics simulation, a
large (N=2(428)^3 particles within a 200 Mpc/h comoving box) simulation of the
LCDM cosmology that includes both radiative cooling and a simple model for
galactic feedback. Specifically, we focus on the X-ray properties of the
simulated clusters at z=0 and demonstrate a reasonable level of agreement
between simulated and observed cluster scaling relations.Comment: 7 pages, 4 figures, accepted for publication in Advances in Space
Research (proceedings of the COSPAR 2004 Assembly, Paris
Impact of Systematics on SZ-Optical Scaling Relations
One of the central goals of multi-wavelength galaxy cluster cosmology is to
unite all cluster observables to form a consistent understanding of cluster
mass. Here, we study the impact of systematic effects from optical cluster
catalogs on stacked SZ signals. We show that the optically predicted
Y-decrement can vary by as much as 50% based on the current 2 sigma systematic
uncertainties in the observed mass-richness relationship. Mis-centering and
impurities will suppress the SZ signal compared to expectations for a clean and
perfectly centered optical sample, but to a lesser degree. We show that the
level of these variations and suppression is dependent on the amount of
systematics in the optical cluster catalogs. We also study X-ray
luminosity-dependent sub-sampling of the optical catalog and find that it
creates Malmquist bias increasing the observed Y-decrement of the stacked
signal. We show that the current Planck measurements of the Y-decrement around
SDSS optical clusters and their X-ray counterparts are consistent with
expectations after accounting for the 1 sigma optical systematic uncertainties
using the Johnston mass richness relation.Comment: 6 pages, 4 figures. Revised to match version accepted in the
Astrophysical Journa
Massive Halos in Millennium Gas Simulations: Multivariate Scaling Relations
The joint likelihood of observable cluster signals reflects the astrophysical
evolution of the coupled baryonic and dark matter components in massive halos,
and its knowledge will enhance cosmological parameter constraints in the coming
era of large, multi-wavelength cluster surveys. We present a computational
study of intrinsic covariance in cluster properties using halo populations
derived from Millennium Gas Simulations (MGS). The MGS are re-simulations of
the original 500 Mpc/h Millennium Simulation performed with gas dynamics under
two different physical treatments: shock heating driven by gravity only (GO)
and a second treatment with cooling and preheating (PH). We examine
relationships among structural properties and observable X-ray and
Sunyaev-Zel'dovich (SZ) signals for samples of thousands of halos with M_200 >
5 \times 10^{13} Msun/h and z < 2. While the X-ray scaling behavior of PH model
halos at low-redshift offers a good match to local clusters, the model exhibits
non-standard features testable with larger surveys, including weakly running
slopes in hot gas observable--mass relations and ~10% departures from
self-similar redshift evolution for 10^14 Msun/h halos at redshift z ~ 1. We
find that the form of the joint likelihood of signal pairs is generally
well-described by a multivariate, log-normal distribution, especially in the PH
case which exhibits less halo substructure than the GO model. At fixed mass and
epoch, joint deviations of signal pairs display mainly positive correlations,
especially the thermal SZ effect paired with either hot gas fraction
(r=0.88/0.69 for PH/GO at z=0) or X-ray temperature (r=0.62/0.83). We discuss
halo mass selection by signal pairs, and find a minimum mass scatter of 4% in
the \PH model by combining thermal SZ and gas fraction measurements.Comment: 19 pages, 14 figures, submitted to Ap
In vitro and ex vivo effect of hyaluronic acid on erythrocyte flow properties
<p>Abstract</p> <p>Background</p> <p>Hyaluronic acid (HA) is present in many tissues; its presence in serum may be related to certain inflammatory conditions, tissue damage, sepsis, liver malfunction and some malignancies. In the present work, our goal was to investigate the significance of hyaluronic acid effect on erythrocyte flow properties. Therefore we performed <it>in vitro </it>experiments incubating red blood cells (RBCs) with several HA concentrations. Afterwards, in order to corroborate the pathophysiological significance of the results obtained, we replicated the <it>in vitro </it>experiment with <it>ex vivo </it>RBCs from diagnosed rheumatoid arthritis (RA) patients, a serum HA-increasing pathology.</p> <p>Methods</p> <p>Erythrocyte deformability (by filtration through nucleopore membranes) and erythrocyte aggregability (EA) were tested on blood from healthy donors additioned with purified HA. EA was measured by transmitted light and analyzed with a mathematical model yielding two parameters, the aggregation rate and the size of the aggregates. Conformational changes of cytoskeleton proteins were estimated by electron paramagnetic resonance spectroscopy (EPR).</p> <p>Results</p> <p><it>In vitro</it>, erythrocytes treated with HA showed increased rigidity index (RI) and reduced aggregability, situation strongly related to the rigidization of the membrane cytoskeleton triggered by HA, as shown by EPR results. Also, a significant correlation (r: 0.77, p < 0.00001) was found between RI and serum HA in RA patients.</p> <p>Conclusions</p> <p>Our results lead us to postulate the hypothesis that HA interacts with the erythrocyte surface leading to modifications in erythrocyte rheological and flow properties, both <it>ex vivo </it>and <it>in vitro</it>.</p
- …