336 research outputs found

    Growth, Condition, and Trophic Relations of Stocked Trout in Southern Appalachian Mountain Streams

    Get PDF
    Stream trout fisheries are among the most popular and valuable in the United States, but many are dependent on hatcheries to sustain fishing and harvest. Thus, understanding the ecology of hatchery‐reared trout stocked in natural environments is fundamental to management. We evaluated the growth, condition, and trophic relations of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss that were stocked in southern Appalachian Mountain streams in western North Carolina. Stocked and wild (naturalized) trout were sampled over time (monthly; September 2012–June 2013) to compare condition and diet composition and to evaluate temporal dynamics of trophic position with stable isotope analysis. Relative weights (Wr) of stocked trout were inversely associated with their stream residence time but were consistently higher than those of wild trout. Weight loss of harvested stocked trout was similar among species and sizes, but fish stocked earlier lost more weight. Overall, 40% of 141 stomachs from stocked trout were empty compared to 15% of wild trout stomachs (N = 26). We identified a much higher rate of piscivory in wild trout (18 times that of stocked trout), and wild trout were 4.3 times more likely to consume gastropods relative to stocked trout. Hatchery‐reared trout were isotopically similar to co‐occurring wild fish for both δ13C and δ15N values but were less variable than wild trout. Differences in sulfur isotope ratios (δ34S) between wild and hatchery‐reared trout indicated that the diets of wild fish were enriched in δ34S relative to the diets of hatchery‐reared fish. Although hatcheryreared trout consumed prey items similar to those of wild fish, differences in consumption or behavior (e.g., reduced feeding) may have resulted in lower condition and negative growth. These findings provide critical insight on the trophic dynamics of stocked trout and may assist in developing and enhancing stream trout fisheries

    Autonomicity of NASA Missions

    Get PDF

    Challenges of Developing New Classes of NASA Self-Managing Mission

    Get PDF
    NASA is proposing increasingly complex missions that will require a high degree of autonomy and autonomicity. These missions pose hereto unforeseen problems and raise issues that have not been well-addressed by the community. Assuring success of such missions will require new software development techniques and tools. This paper discusses some of the challenges that NASA and the rest of the software development community are facing in developing these ever-increasingly complex systems. We give an overview of a proposed NASA mission as well as techniques and tools that are being developed to address autonomic management and the complexity issues inherent in these missions

    Requirements of an Integrated Formal Method for Intelligent Swarms

    Get PDF
    NASA is investigating new paradigms for future space exploration, heavily focused on the (still) emerging technologies of autonomous and autonomic systems [47, 48, 49]. Missions that rely on multiple, smaller, collaborating spacecraft, analogous to swarms in nature, are being investigated to supplement and complement traditional missions that rely on one large spacecraft [16]. The small spacecraft in such missions would each be able to operate on their own to accomplish a part of a mission, but would need to interact and exchange information with the other spacecraft to successfully execute the mission

    Coulomb-Driven Cluster-Glass Behavior in Mn-Intercalated Ti1+yS2

    Get PDF
    We have investigated the low-temperature spin-glasslike phase in the intercalated transition-metal dichalcogenide Mn0.09Ti1.1S2. A departure from Curie–Weiss behavior in the paramagnetic regime indicated the formation of small ferromagnetically correlated clusters. The Vogel–Fulcher law provided an excellent description of relaxation times in the vicinity of the transition, showing that the glasslike phase occurs due to interaction between the clusters. Cole–Cole plots for data close to the transition were linear, which is consistent with a simple exponential distribution of cluster sizes. A Monte Carlo simulation of the dichalcogenide system, including excess self-intercalated Ti ions, gave an exponential cluster-size distribution for a relatively narrow range of concentration values of Mn and Ti ions, values that were consistent with those of the Mn0.09Ti1.1S2 sample. Strong commonality in the relaxation behavior with certain ferroelectric relaxor systems suggests underlying similarity in the microscopic structure of the clusters in both systems, which may be chainlike or quasi-one-dimensional

    Protecting Against Address Space Layout Randomization (ASLR) Compromises and Return-to-Libc Attacks Using Network Intrusion Detection Systems

    Get PDF
    Writable XOR eXecutable (W XOR X) and Address Space Layout Randomisation (ASLR), have elevated the understanding necessary to perpetrate buffer overflow exploits [1]. However, they have not proved to be a panacea [1] [2] [3] and so other mechanisms such as stack guards and prelinking have been introduced. In this paper we show that host based protection still does not offer a complete solution. To demonstrate, we perform an over the network brute force return-to-libc attack against a pre-forking concurrent server to gain remote access to W XOR X and ASLR. We then demonstrate that deploying a NIDS with appropriate signatures can detect this attack efficiently

    Healthcare provider knowledge, attitudes, beliefs, and practices surrounding the prescription of opioids for chronic non-cancer pain in North America: protocol for a mixed-method systematic review

    Get PDF
    Background Evidence from diverse areas of medicine (e.g., cardiovascular disease, diabetes) indicates that healthcare providers (HCPs) often do not adhere to clinical practice guidelines (CPGs) despite a clear indication to implement recommendations—a phenomenon commonly termed clinical inertia. There are a variety of reasons for clinical inertia, but HCP-related factors (e.g., knowledge, motivation, agreement with guidelines) are the most salient and amenable to intervention aimed to improve adherence. CPGs have been developed to support the safe and effective prescription of opioid medication for the management of chronic non-cancer pain. The extent of physician uptake and adherence to such guidelines is not yet well understood. The purpose of this review is to synthesize the published evidence about knowledge, attitudes, beliefs, and practices that HCPs hold regarding the prescription of opioids for chronic non-cancer pain. Methods An experienced information specialist will perform searches of CINAHL, Embase, MEDLINE, and PsycINFO bibliographic databases. The Cochrane library, PROSPERO, and the Joanna Briggs Institute will be searched for systematic reviews. Searches will be performed from inception to the present. Quantitative and qualitative study designs that report on HCP knowledge, attitudes, beliefs, or practices in North America will be eligible for inclusion. Studies reporting on interventions to improve HCP adherence to opioid prescribing CPGs will also be eligible for inclusion. Two trained graduate-level research assistants will independently screen articles for inclusion, perform data extraction, and perform risk of bias and quality assessment using recommended tools. Confidence in qualitative evidence will be evaluated using the Grades of Recommendation, Assessment, Development, and Evaluation-Confidence in the Evidence from Qualitative Reviews (GRADE-CERQual) approach. Confidence in quantitative evidence will be assessed using the GRADE approach. Discussion The ultimate goal of this work is to support interventions aiming to optimize opioid prescribing practices in order to prevent opioid-related morbidity and mortality without restricting a HCP’s ability to select the most appropriate treatment for an individual patient

    Growth control of the eukaryote cell: a systems biology study in yeast.

    Get PDF
    BACKGROUND: Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. RESULTS: Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. CONCLUSION: This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    • …
    corecore