1,659 research outputs found

    Hydrodynamic aspects of shark scales

    Get PDF
    Ridge morphometrices on placoid scales from 12 galeoid shark species were examined in order to evaluate their potential value for frictional drag reduction. The geometry of the shark scales is similar to longitudinal grooved surfaces (riblets) that have been previously shown to give 8 percent skin-friction reduction for turbulent boundary layers. The present study of the shark scales was undertaken to determine if the physical dimensions of the ridges on the shark scales are of the right magnitude to be used by the sharks for drag reduction based on previous riblet work. The results indicate that the ridge heights and spacings are normally maintained between the predicted optimal values proposed for voluntary and burst swimming speeds throughout the individual's ontogeny. Moreover, the species which might be considered to be the faster posses smaller and more closely spaced ridges that based on the riblet work would suggest a greater frictional drag reduction value at the high swimming speeds, as compared to their more sluggish counterparts

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    High performance reduced order modeling techniques based on optimal energy quadrature: application to geometrically non-linear multiscale inelastic material modeling

    Get PDF
    A High-Performance Reduced-Order Model (HPROM) technique, previously presented by the authors in the context of hierarchical multiscale models for non linear-materials undergoing infinitesimal strains, is generalized to deal with large deformation elasto-plastic problems. The proposed HPROM technique uses a Proper Orthogonal Decomposition procedure to build a reduced basis of the primary kinematical variable of the micro-scale problem, defined in terms of the micro-deformation gradient fluctuations. Then a Galerkin-projection, onto this reduced basis, is utilized to reduce the dimensionality of the micro-force balance equation, the stress homogenization equation and the effective macro-constitutive tangent tensor equation. Finally, a reduced goal-oriented quadrature rule is introduced to compute the non-affine terms of these equations. Main importance in this paper is given to the numerical assessment of the developed HPROM technique. The numerical experiments are performed on a micro-cell simulating a randomly distributed set of elastic inclusions embedded into an elasto-plastic matrix. This micro-structure is representative of a typical ductile metallic alloy. The HPROM technique applied to this type of problem displays high computational speed-ups, increasing with the complexity of the finite element model. From these results, we conclude that the proposed HPROM technique is an effective computational tool for modeling, with very large speed-ups and acceptable accuracy levels with respect to the high-fidelity case, the multiscale behavior of heterogeneous materials subjected to large deformations involving two well-separated scales of length.Peer ReviewedPostprint (author's final draft

    Spectroscopy of an AdS Reissner-Nordstrom black hole

    Full text link
    In the framework of black hole spectroscopy, we extend the results obtained for a charged black hole in an asymptotically flat spacetime to the scenario with non vanishing negative cosmological constant. In particular, exploiting Hamiltonian techniques, we construct the area spectrum for an AdS Reissner-Nordstrom black hole.Comment: 21 pages, enhanced conclusions, references adde

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced Finite Element square techniques (RFE2): towards industrial multiscale FE software

    Get PDF
    The FE2 method has gained a considerable interest within the simulation science community because of its generality and potential. Indeed, multiscale problems with complex micro-structures and constitutive behaviors can be tackled whereas classical homogenization techniques fail at predicting overall material properties. However, the multiplicative cost of different scale discretizations has significantly restricted their common use and distribution among industrial FE codes. The reduced order modeling techniques proposed in [1] and [2] are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain microstructural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Different performance ratios between the full (high fidelity) and reduced simulations are obtained for a given user prescribed error. In fact, the ratio between the number of sampling points, i.e. integration points, of a standard FE2 and the reduced sampling points provided by the RFE2 technique scales with the complexity of the analyzed microscopic cells and, for relative errors below 1%, this ratio can easily reach three or four orders of magnitude when the amount of micro-structural sampling points is up to 106. Consequently, this technology results in feasible and affordable FE2 simulations suitable for industrial purposes.Postprint (published version
    corecore