7 research outputs found

    RNase H2, mutated in Aicardi-Goutières syndrome, promotes LINE-1 retrotransposition

    Get PDF
    Long INterspersed Element class 1 (LINE-1) elements are a type of abundant retrotransposons active in mammalian genomes. An average human genome contains ~100 retrotransposition-competent LINE-1s, whose activity is influenced by the combined action of cellular repressors and activators. TREX1, SAMHD1 and ADAR1 are known LINE-1 repressors and when mutated cause the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). Mutations in RNase H2 are the most common cause of AGS, and its activity was proposed to similarly control LINE-1 retrotransposition. It has therefore been suggested that increased LINE-1 activity may be the cause of aberrant innate immune activation in AGS. Here, we establish that, contrary to expectations, RNase H2 is required for efficient LINE-1 retrotransposition. As RNase H1 overexpression partially rescues the defect in RNase H2 null cells, we propose a model in which RNase H2 degrades the LINE-1 RNA after reverse transcription, allowing retrotransposition to be completed. This also explains how LINE-1 elements can retrotranspose efficiently without their own RNase H activity. Our findings appear to be at odds with LINE-1-derived nucleic acids driving autoinflammation in AGS.M.B.-G. is funded by a “Formacion Profesorado Universitario” (FPU) PhD fellowship from the Government of Spain (MINECO, Ref FPU15/03294), and this paper is part of her thesis project (“Epigenetic control of the mobility of a human retrotransposon”). R.V.-A. is funded by a PFIS Fellowship from the Government of Spain (ISCiii, FI16/00413). O.M. is funded by an EMBO Long-Term Fellowship (ALTF 7-2015), the European Commission FP7 (Marie Curie Actions, LTFCOFUND2013, GA-2013-609409) and the Swiss National Science Foundation (P2ZHP3_158709). S.R.H. is funded by the Government of Spain (MINECO, RYC-2016-21395 and SAF2015-71589-P). A.P.J’s laboratory is supported by the UK Medical Research Council (MRC University Unit grant U127527202). J.L.G.P’s laboratory is supported by CICEFEDER- P12-CTS-2256, Plan Nacional de I+D+I 2008-2011 and 2013-2016 (FISFEDER- PI14/02152), PCIN-2014-115-ERA-NET NEURON II, the European Research Council (ERC-Consolidator ERC-STG-2012-233764), by an International Early Career Scientist grant from the Howard Hughes Medical Institute (IECS-55007420), by The Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund (ISFF2) and by a private donation from Ms Francisca Serrano (Trading y Bolsa para Torpes, Granada, Spain)

    The Effects of Inhalant Misuse on Attentional Networks

    No full text
    Inhalant misuse among adolescents is poorly understood from a neuropsychological perspective. This study aimed to identify attentional deficits related to inhalant misuse measured with the Attention Network Test (ANT). We examined three groups: 19 inhalant users, 19 cannabis users, and 18 community controls. There were no group differences on the ANT measures of orienting, alerting, and executive control. However, compared to the cannabis and control groups, inhalant users demonstrated an increased rate of response errors in the absence of any reaction time differences. These differences may reflect a selective deficit in sustained attention or greater impulsivity in the inhalant group

    Characterization of Novel Missense Variants of SERPINA1 Gene Causing Alpha-1 Antitrypsin Deficiency.

    Get PDF
    The SERPINA1 gene is highly polymorphic, with more than 100 variants described in databases. SERPINA1 encodes the alpha-1 antitrypsin (AAT) protein, and severe deficiency of AAT is a major contributor to pulmonary emphysema and liver diseases. In Spanish patients with AAT deficiency, we identified seven new variants of the SERPINA1 gene involving amino acid substitutions in different exons: PiSDonosti (S+Ser14Phe), PiTijarafe (Ile50Asn), PiSevilla (Ala58Asp), PiCadiz (Glu151Lys), PiTarragona (Phe227Cys), PiPuerto Real (Thr249Ala), and PiValencia (Lys328Glu). We examined the characteristics of these variants and the putative association with the disease. Mutant proteins were overexpressed in HEK293T cells, and AAT expression, polymerization, degradation, and secretion, as well as antielastase activity, were analyzed by periodic acid-Schiff staining, Western blotting, pulse-chase, and elastase inhibition assays. When overexpressed, S+S14F, I50N, A58D, F227C, and T249A variants formed intracellular polymers and did not secrete AAT protein. Both the E151K and K328E variants secreted AAT protein and did not form polymers, although K328E showed intracellular retention and reduced antielastase activity. We conclude that deficient variants may be more frequent than previously thought and that their discovery is possible only by the complete sequencing of the gene and subsequent functional characterization. Better knowledge of SERPINA1 variants would improve diagnosis and management of individuals with AAT deficiency.Supported by Instituto de Salud Carlos III grant AESI PI14CIII/00070.S

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore