22 research outputs found

    Real-time model-based plasma state estimation, monitoring and integrated control in TCV, ASDEX-Upgrade and ITER

    Get PDF
    To maintain a high-performance, long-duration tokamak plasma scenario, it is necessary to maintain desired profiles while respecting operational limits. This requires real-time estimation of the profiles, monitoring of their evolution with respect to predictions and known limits, and their active control to remain within the desired envelope. Model-based techniques are particularly suitable to tackle such problems due to the nonlinear nature of the processes and the tight coupling among the various physical variables. A suite of physics-based, control-oriented models for the core plasma proles in a tokamak is presented, with models formulated in such a way that powerful methods from the systems and control engineering community can be leveraged to design ancient algorithms. We report on new development and applications of these models for real-time reconstruction, monitoring and integrated control of plasma proles on TCV, ASDEX-Upgrade and simulations for ITER

    Overview of the JET results in support to ITER

    Get PDF

    Feedback-controlled NTM stabilization on ASDEX Upgrade

    No full text
    On ASDEX Upgrade a concept for real-time stabilization of NTMs has been realized and successfully applied to (3,2)- and (2,1)-NTMs. Since most of the work has meanwhile been published elsewhere, a short summary with the appropriate references is given. Limitations, deficits and future extensions of the system are discussed. In a second part the recent work on using modulated ECCD for NTM stabilisation is described in some detail. In these experiments ECCD power is modulated according to a magnetic footprint of the rotating NTM. In agreement with earlier results it could be shown that O-point heating reduces the necessary average power for stabilisation whereas X-point heating hampers stabilisation. Although this modulated scheme is not relevant for routine NTM stabilisation on ASDEX Upgrade it may be mandatory for ITER or DEMO. On ASDEX Upgrade it has been re-developed to demonstrate the usage of a FAst DIrectional Switch to continously heat the O-point of the rotating island with only one gyrotron switching between two launchers which target the mode at locations separated in phase by 180 degrees as described in [1]
    corecore