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Abstract

We present recent progress in model-based approaches
for plasma state estimation, monitoring and control and
applications on TCV, AUG, RFX and ITER.
• State estimation: merge physics model predictions with real-

time measurements yielding estimates of plasma state. Imple-
mented at TCV, AUG and RFX.
• Integrated control: Model-based control algorithms, includ-

ing Model Predictive Control, have been tested for control
of TCV plasma density, temperature and current density pro-
files. Optimization-based algorithms were used to study optimal
plasma ramp-up and ramp-down, as well as shot-to-shot sce-
nario optimization. Applications to TCV, AUG and ITER.
• Monitoring: Real-time monitoring of plasma condition w.r.t.

model-based expectation of plasma evolution can serve as a first
line of defense to avoid reaching (disruption) limits. Prototype
implementation shown for ASDEX-Upgrade.

All these approaches are based on physics-based,
control-oriented models of the plasma evolution, which
allow use of established tools from systems & control en-
gineering community.

1. Introduction

• Control systems of future tokamaks will rely on advanced control
functions to obtain high performance plasmas, with long duration
and high repeatability. Some of these functions, also listed in [1]
are shown in Figure 1
• Model-based design of the various algorithms minimize develop-

ment time and allows extensive simulations for (formal) validation
of the PCS components.
• Several new developments are shown that have been imple-

mented on the TCV, AUG, RFX tokamaks, and simulations for
ITER.
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Figure 1: PCS scheme with advanced functions

2. Control-oriented models of plasma core profile
evolution

2.1 RAPTOR real-time plasma profile simu-
lator

• RAPTOR [2] [3] solves core ψ(ρ, t) and Te(ρ, t) evolution equa-
tions including main nonlinear couplings.
• Source and transport models parametrized. Time-varying equi-

librium geometry externally specified.
• Real-time capable on present tokamaks (1ms per time step),

faster than real-time for ITER.

2.2 Particle transport model

• 1D plasma density profile model including vessel and wall parti-
cle inventory. [4]

– Empirical transport coefficients, parametrized particle
sources.

2.3 RAPTOR simulation of AUG discharge

Figure 2: RAPTOR simulation of H-mode AUG discharge using the gradient-based

electron heat diffusivity transport model. The equilibrium geometry, particle den-

sity, H factor and plasma current evolution are prescribed, and the simulation cor-

rectly reproduces temperature profiles and simulates q profile evolution including

sawteeth. µTe
represents the scaling of the pedestal to achieve the prescribed H

factor.

3. Real-time state reconstruction on
ASDEX-Upgrade, TCV and RFX-mod

3.1 Dynamic state observer
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Figure 3: Plasma state reconstruction using a dynamic state observer: merge

diagnostic measurements and model predictions. Real-time checks of measure-

ment residuals allow detection of faults in diagnostics and/or plasma.

3.2 Implementation on TCV and AUG with
different RT diagnostics
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3.3 Results: temperature and q profile re-
construction on AUG and RFX
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Figure 6: Top: RAPTOR state observer

estimate of temperature profiles on AUG,

and RT estimate of deviation from model-

based profile prediction. Right: RAPTOR

state observer estimate of temperature

and q profile evolution on RFX, including

effects of sawtooth crashes.

3.4 Electron density reconstruction on TCV
and AUG
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Figure 8: Reconstruction of TCV

plasma particle density using a dy-

namic state observer in the presence

of fringe jumps on interferometer chan-

nels.
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Figure 9: Reconstruction of AUG

plasma particle density using a state

observer in the presence of ICRH

and pellets which render interferometer

measurements invalid.

4. Model-based control

4.1 Simultaneous control of plasma β, ne
and q profile on TCV

• Model-based approach: use models to design controllers, and
for closed-loop testing before application to experiment.
• Result controllers usually work on first trial and require minimal

or no manual tuning on the system itself.
• TCV experimental results (MST1 campaign 2016) used two EC

sources (PA, ctr-ECCD) and PB (co-ECCD)) for heating and cur-
rent drive. Demonstrated combined operation of:

– Model-based state observers for plasma particle density, tem-
perature profile and q profile (RAPTOR).

– Robust controller for plasma density using gas valve [5].
– Model Predictive Controller (MPC) for plasma β and q profile,

predicts plasma evolution and takes (time-varying) constraints
into account [6].

– Isoflux-based plasma shape controller (see EX/P8-32)
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Figure 10: Simultaneous control of

plasma density and beta using model-

based controllers on TCV. Two EC

sources (PA/PB) are used for heat-

ing. Model-predictive controller (MPC)

is used for β control
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Figure 11: Simultaneous control of

plasma density, and model-predictive

control (MPC) of β and ι = 1/q on TCV.

q evolution model did not include saw-

teeth, therefore the state observer finds

q < 1.

5. Model-based plasma scenario monitoring:
principles and first results

5.1 Approaches to disruption avoidance,
prediction, mitigation

• Presently, most tokamaks employ disruption prediction and miti-
gation only as a ‘last line of defense’.
• This approach is not advised for ITER and other large tokamaks,

where use of disruption mitigation systems (DMS) should be min-
imized.
• Instead, advanced algorithms in the PCS should provide a ‘first

line of defense’, avoiding disruptions when the plasma parame-
ters leave a ’trusted zone’ in the operating space. This is a com-
bination of scenario monitoring, disruption prediction, avoidance
and mitigation.
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Figure 12: Illustration of present ap-

proaches to disruption avoidance.
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Figure 13: Illustration of integrated ap-

proach for scenario monitoring.
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This approach requires:
• Real-time estimate of the plasma

state based on multiple diagnostics
(state observers).
• Real-time control of the plasma state

to remain in the desired envelope.
• Real-time monitoring of the estimated

plasma evolution with respect to the
(real-time) predicted evolution.
• Real-time monitoring of plasma state

with respect to known disruption lim-
its.

5.2 Prototype implementation of real-time
monitoring on AUG

• Monitoring plasma evolution w.r.t. model-based expectation: first
tests during EUROfusion MST1 campaign 2016.
• AUG control system runs two versions of RAPTOR:

– RAPTOR-observer: estimate of plasma temperature profile
merging model + measurements.

– RAPTOR-predictive: model-only prediction of temperature
evolution.

0 0.5 1 1.5 2

Ip
 [

M
A

]/
P

[M
W

]

0

0.5

1

1.5

2

Ip

P NBI/10

P EC

P IC

0 0.5 1 1.5 2

<
n

e
>

, 
P

R
a

d

0

5

10

n
e
 [10

19
m

-3
]

P
Rad

 [MW]

0 0.5 1 1.5 2

T
e

 [
e

V
]

0

2000

4000

6000 Te0, measured (ECE)

Te0, RT estimated

Te0, RT simulated

t[s]

0 0.5 1 1.5 2

A
la

rm
 F

u
n

c
ti

o
n

 [
a

.u
.]

0

2

4

6 Alarm function

Te alarm function

Radiation alarm function

Radiation peaking

Figure 15: Example of model-based plasma monitoring on ASDEX-Upgrade. Due

to impurity accumulation, the plasma radiates more than expected, resulting in a

discrepancy between the real-time predicted, reconstructed, and ECE measured

temperature. This information can be used in the future as signal to a supervisory

control system.

6. Numerical optimization for plasma control

6.1 Actuator trajectory optimization

• Tokamak plasma evolves in response to actuators (auxiliary
power, coil currents...).
• Goal of tokamak operations: achieve desired plasma state evo-

lution.
• Approach: formulate as an optimization problem.
• In practice: Nonlinear constrained optimization problem, solve

using Sequential Quadratic Programming.
• Example: Ramp-down trajectory optimization for AUG

– Compute evolution of Ip(t), κ(t), Paux(t) for fastest possible
plasma ramp-down that avoids known physics constraints.

Figure 16: Example of ramp-down optimization for an AUG-like plasma. Con-

straints on βN , q0 and li3 are successively added, leading to different time-

trajectories for plasma current and elongation.

6.2 Iterative Learning Control
• Due to model-reality mismatch the optimized trajectories may not

yield the correct result.
• Iterative Learning Control is a method to adapt the trajectories

automatically from shot to shot to ’learn’ the trajectories that yield
the desired plasma evolution in the experiment.
• Method: Perform an experiment → Compute error w.r.t. desired

plasma evolution (offline)→ Solve optimization problem yielding
modification of trajectories to decrease error. → Repeat experi-
ment.
• Application: Current density profile control in TCV experiments

(left) and ITER simulations (right) [7]. ITER ramp-up density con-
trol with gas and pellet actuators (EX/P6-36).
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Figure 17: ILC applied to li con-

trol on TCV. The Ip trajectory

is sequentially improved to yield

the desired li evolution [7]
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Figure 19: ILC procedure applied to sim-

ulations of ITER ramp-up scenario. First,

the q profile evolution is optimized using the

method in [8]. Then, a simulated model mis-

match is added which leads to an undesired

q profile at the start of flat-top. The ILC pro-

cedure is then applied to recover the desired

profile by changing the Ip and Paux evolution.

6.3 Optimization-based actuator allocation
algorithm
• Actuator allocation: decide which actuator will be used for what

control task, in real-time.
• Formulated in [9] as nonlinear optimization problem (brute force

computation).
• We propose a reformulation as a Mixed Integer Quadratic Pro-

gramming problem, solvable in <<1s on ordinary CPU even for
ITER-scale problem.

• Application to ITER: optimize allocation of 24 gyrotrons to vari-
ous targets with different ρdep, Prequest, Icd,request, while minimizing
change w.r.t. previous allocation.
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7. Outlook

• Improve models: add transport equations for multiple species,
pedestal parametrization, neural network emulations of quasilin-
ear gyrokinetic fluxes [10]
• Develop and test tools for model-based disruption limit avoidance

and plasma supervision algorithms.
• Continue deploying model-based control, reconstruction, and

monitoring on TCV, AUG, RFX and other tokamaks, aim for rou-
tine use of these tools in discharge development and operations.
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