27 research outputs found

    The formation of passive margins: constraints from the crustal structure and segmentation of the deep Galicia margin, Spain

    Get PDF
    The crustal structure of the Mesozoic deep Galicia margin and adjacent ocean-continent boundary (OCB) was investigated by seismic reflection (including pre-stack depth migration and attenuation of seismic waves with time). The seismic data were calibrated using numerous geological samples recovered by drilling and/or by diving with submersible. The N-S trending margin and OCB are divided in two distinct segments by NE-SW synrift transverse faults locally reactivated and inverted by Cenozoic tectonics. The transverse faulting and OCB segmentation result from crustal stretching probably in a NE-SW direction during the rifting stage of the margin in early Cretaceous times. The Cenozoic tectonics are related to Iberia-Eurasia convergence in Palaeogene times (Pyrenean event). In both segments of the deep margin, the seismic crust is made of four horizontal layers: (1) two sedimentary layers corresponding to post- and syn-rift sequences, where velocity ranges from 1.9 to 3.5 km s−1, and where the Q factor is low, the two sedimentary layers being separated by a strong reflector marking the break-up unconformity; (2) a faulted layer, where velocity ranges from 4.0 to 5.2 km s−1, and where the Q factor is high. This layer corresponds to the margin tilted blocks, where continental basement and lithified pre-rift sediments were sampled; (3) the lower seismic crust, where the velocity (7 km s−1 and more) and the Q factor are the highest. This layer, probably made of partly serpentinized peridotite, is roofed by a strong S-S’ seismic reflector, and resting on a scattering, poorly reflective Moho. A composite model, based both on analogue modelling of lithosphere stretching and on available structural data, accounts for the present structure of the margin and OCB. Stretching and thinning of the lithosphere are accommodated by boudinage of the brittle levels (upper crust and uppermost mantle) and by simple shear in the ductile levels (lower crust and upper lithospheric mantle). Two main conjugate shear zones may account for the observations and seismic data: one (SZ1), located in the lower ductile continental crust, is synthetic to the tilting sense of the margin crustal blocks; another (SZ2), located in the ductile mantle, accounts for the deformation of mantle terranes and their final unroofing and exposure at the continental rift axis (now the OCB). The S-Sâ€Č reflector is interpreted as the seismic signature of the tectonic contact between crustal terranes and mantle rocks partly transformed into serpentinite by syn-rift hydrothermal activity. It is probably related to both shear zones SZ1 and SZ2. The seismic Moho is lower within the lithosphere, at the fresh-serpentinized peridotite boundary

    Observational and Modeling Analysis of Land–Atmopshere Coupling over Adjacent Irrigated and Rainfed Cropland during the GRAINEX Field Campaign

    Get PDF
    The Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 to investigate Land-Atmosphere (L-A) coupling just prior to and through the growing season across adjacent, but distinctly unique, soil moisture regimes (contrasting irrigated and rainfed fields). GRAINEX was uniquely designed for the development and analysis of an extensive observational dataset for comprehensive process studies of L-A coupling, by focusing on irrigated and rainfed croplands in a ~100 x 100 km domain in southeastern Nebraska. Observation platforms included multiple NCAR EOL Integrated Surface Flux Systems and Integrated Sounding Systems, NCAR CSWR Doppler Radar on Wheels, 1200 radiosonde balloon launches from 5 sites, the NASA GREX airborne L-Band radiometer, and 75 University of Alabama-Huntsville Environmental Monitoring Economic Monitoring Sensor Hubs (EMESH mesonet stations). An integrated observational and modeling approach to advance knowledge of L-A coupling processes and precipitation impacts in regions of heterogeneous soil moisture will be presented. Specifically, through observation of land surface states, surface fluxes, near surface meteorology, and properties of the atmospheric column, an examination of the diurnal planetary boundary layer evolving characteristics will be presented. Results from a hierarchy of modeling platforms (e.g. single column, large-eddy, and mesoscale simulations) will also be presented to complement the observational findings. The modeling effort will generate high spatiotemporal resolution datasets to: 1) generate a multi-physics ensemble to test the robustness and potentially advance physical parameterizations in high resolution weather and climate models, 2) comparison of prescribed forcing from observations and those from offline land surface model simulations and high resolution operational analyses, 3) determine the ability of model simulations to reproduce observed boundary layer evolution, with particular attention to the processes that compose the L-A coupling chain and metrics (e.g. mixing ratio diagrams), and 4) in combination with observations, isolate the impacts of soil moisture heterogeneity on planetary boundary layer characteristics, cloud development, precipitation, mesoscale circulation patters and boundary layer development. Initial results from the observational and modeling analysis will be presented

    Environmental control of tropical cyclones in CMIP5: A ventilation perspective

    Get PDF
    The ventilation index serves as a theoretically based metric to assess possible changes in the statistics of tropical cyclones to combined changes in vertical wind shear, midlevel entropy deficit, and potential intensity in climate models. Model output from eight Coupled Model Intercomparison Project 5 models is used to calculate the ventilation index. The ventilation index and its relationship to tropical cyclone activity between two 20 year periods are compared: the historical experiment from 1981 to 2000 and the RCP8.5 experiment from 2081 to 2100. The general tendency is for an increase in the seasonal ventilation index in the majority of the tropical cyclone basins, with exception of the North Indian basin. All the models project an increase in the midlevel entropy deficit in the tropics, although the effects of this increase on the ventilation index itself are tempered by a compensating increase in the potential intensity and a decrease in the vertical wind shear in most tropical cyclone basins. The nonlinear combination of the terms in the ventilation index results in large regional and intermodel variability. Basin changes in the ventilation index are well correlated with changes in the frequency of tropical cyclone formation and rapid intensification in the climate models. However, there is large uncertainty in the projections of the ventilation index and the corresponding effects on changes in the statistics of tropical cyclone activity

    Dynamical downscaling of tropical cyclones from CCSM4 simulations of the Last Glacial Maximum

    Get PDF
    Dynamical downscaling of simulations of the Last Glacial Maximum (LGM) and late twentieth century (20C) were conducted using the Weather Research and Forecasting (WRF) model with the aim of (1) understanding how the downscaled kinematic and thermodynamic variables influence simulated tropical cyclone (TC) activity over the western North Pacific during the LGM and the 20C periods and (2) to test the relevance of TC genesis factors for the colder LGM climate. The results show that, despite the lower temperatures during the LGM, the downscaled TC climatology over the western North Pacific in the LGM simulation does not differ significantly from that in the 20C simulation. Among the TC environmental factors, the TC potential intensity, mid‐tropospheric entropy deficit, and vertical wind shear during the LGM were consistent with previous analyses of TC genesis factors in LGM global climate model simulations. Changes in TC genesis density between the LGM and the 20C simulations seem to be well represented by the ventilation index, a nondimensional measure of the combined effects of vertical wind shear, and thermodynamic properties, suggesting the potential applicability of those factors for TC activity evaluation during the LGM and possibly other climates

    Diagnosing Initial Condition Sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008)

    No full text
    Abstract The response of Weather Research and Forecasting (WRF) model predictions of two tropical cyclones to perturbations in the initial conditions is investigated. Local perturbations to the vorticity field in the synoptic environment are created in features considered subjectively to be of importance to the track forecast. The rebalanced analysis is then integrated forward and compared with an unperturbed “control” simulation possessing similar errors to those in the corresponding operational model forecasts. In the first case, Typhoon Sinlaku (2008), the premature recurvature in the control simulation is found to be corrected by a variety of initial perturbations; in particular, the weakening of an upper-level low directly to its north, and the weakening of a remote short-wave trough in the midlatitude storm track. It is suggested that one or both of the short waves may have been initialized too strongly. In the second case, the forecasts for Hurricane Ike (2008) initialized 4 days prior to its landfall in Texas were not sensitive to most remote perturbations. The primary corrections to the track of Ike arose from a weakening of a midlevel ridge directly to its north, and the strengthening of a short-wave trough in the midlatitudes. For both storms, the targets selected by the ensemble transform Kalman filter (ETKF) were often, but not always, consistent with the most sensitive regions found in this study. Overall, the results can be used to retrospectively diagnose features in which the initial conditions require improvement, in order to improve forecasts of tropical cyclone track

    A Highly Configurable Vortex Initialization Method for Tropical Cyclones

    No full text
    Abstract A highly configurable vortex initialization methodology has been constructed in order to permit manipulation of the initial vortex structure in numerical models of tropical cyclones. By using distinct specifications of the flow in the boundary layer and free atmosphere, an array of parameters is available to modify the structure. A nonlinear similarity model that solves the steady-state, height-dependent equations for a neutrally stratified, axisymmetric vortex is solved for the boundary layer flow. Above the boundary layer, a steady-state, moist-neutral, hydrostatic and gradient wind balanced model is used to generate the angular momentum distribution in the free atmosphere. In addition, an unbalanced mass-conserving secondary circulation is generated through the assumption of conservation of mass and angular momentum above the boundary layer. Numerical simulations are conducted using a full-physics mesoscale model to explore the sensitivity of the vortex evolution to different prescriptions of the initial vortex. Dynamical adjustment is found to be dominant in the early evolution of the simulations, thereby masking any sensitivity to initial changes in the secondary circulation and boundary layer structure. The adjustment time can be significantly reduced by arbitrarily enhancing the moisture in the eyewall region
    corecore