144 research outputs found

    The influence of the chemokine CCL22 on tumor development and growth

    Get PDF

    The influence of the chemokine CCL22 on tumor development and growth

    Get PDF

    sQUlearn \unicode{x2013} A Python Library for Quantum Machine Learning

    Full text link
    sQUlearn introduces a user-friendly, NISQ-ready Python library for quantum machine learning (QML), designed for seamless integration with classical machine learning tools like scikit-learn. The library's dual-layer architecture serves both QML researchers and practitioners, enabling efficient prototyping, experimentation, and pipelining. sQUlearn provides a comprehensive toolset that includes both quantum kernel methods and quantum neural networks, along with features like customizable data encoding strategies, automated execution handling, and specialized kernel regularization techniques. By focusing on NISQ-compatibility and end-to-end automation, sQUlearn aims to bridge the gap between current quantum computing capabilities and practical machine learning applications.Comment: 10+5 pages, 5+3 figure

    Improving engineering change management by introducing a standardised description for engineering changes for the automotive wiring harness

    Get PDF
    Engineering change management is a key part in the development of products that requires a lot of resources and time. A key problem is the lack of a shared ontology to describe engineering changes. This creates problems, additional effort and hinders the digitalisation of the engineering change management. This is especially true for the development of the automotive wiring harness where a low degree of automation together with the occurrence of many changes in a multi-variant system poses a big challenge. A description that is unambiguous, comprehensive and coherent is needed. The research presented in this paper tackles this problem. A standardised description for the engineering change management for the automotive wiring harness is introduced in this publication. The authors outline the approach that has been used to create a systematic description. The validation of the standardised description is based on two approaches: a case study of a development project and an ongoing development project. The validation shows that 94% of all engineering changes can be described in the proposed standardised way. Concepts where the standardised descriptions can be used to improve the engineering change process are outlined at the end of the paper. The paper thereby presents a way that directly improves the engineering change process and the product development process. It enables the further improvement of the engineering change management by providing a basis for an automatic processing, evaluation and implementation of engineering changes

    Evaluation of high-degree series expansions of the topographic potential to higher-order powers

    Get PDF
    Mass associated with surface topography makes a significant contribution to the Earth’s gravitational potential at all spectral scales. Accurate computation in spherical harmonics to high degree requires calculations of multiple integer powers of the global topography. The purpose of this paper is to analyse the contributions of Earth’s topography to its potential to the tenth power of the topography, and quantify truncation errors resulting from neglecting higher-order powers. To account for the effect of gravity attenuation with height, we use series expansions for gravity upward-continuation to the Earth’s surface. With degree-2160 expansions, limitation to the first three powers of the topography, as often done in practice, may give rise to maximum truncation errors exceeding 100 mGal at a reference sphere, and ~25 mGal at the topography. Aiming for a maximum truncation error of 1 mGal we found that higher-order terms to the seventh power are required over the Himalaya Mountains as example of Earth’s most rugged land region. Upward-continuation of topographic gravity effects with mGal-precision from the sphere to the Earth’s surface is accomplished with a series expansion of fifth order. As a key finding, the accurate conversion of topography to gravity effects at the Earth’s surface is governed by two similar yet not identical series expansions. For degree-2160 expansions, we recommend that the powers of Earth’s topography be used up to seventh order to accurately evaluate the topographic potential to the mGal-level, as required, e.g., for the construction of high-resolution Bouguer gravity anomaly maps in spherical harmonics

    Pregnant women with bronchial asthma benefit from progressive muscle relaxation: A randomized, prospective, controlled trial

    Get PDF
    Background: Asthma is a serious medical problem in pregnancy and is often associated with stress, anger and poor quality of life. The aim of this study was to determine the efficacy of progressive muscle relaxation (PMR) on change in blood pressure, lung parameters, heart rate, anger and health-related quality of life in pregnant women with bronchial asthma. Methods: We treated a sample of 64 pregnant women with bronchial asthma from the local population in an 8-week randomized, prospective, controlled trial. Thirty-two were selected for PMR, and 32 received a placebo intervention. The systolic blood pressure, forced expiratory volume in the first second, peak expiratory flow and heart rate were tested, and the State-Trait Anger Expression Inventory and Health Survey (SF-36) were employed. Results: According to the intend-to-treat principle, a significant reduction in systolic blood pressure and a significant increase in both forced expiratory volume in the first second and peak expiratory flow were observed after PMR. The heart rate showed a significant increase in the coefficient of variation, root mean square of successive differences and high frequency ranges, in addition to a significant reduction in low and middle frequency ranges. A significant reduction on three of five State-Trait Anger Expression Inventory scales, and a significant increase on seven of eight SF-36 scales were observed. Conclusions: PMR appears to be an effective method to improve blood pressure, lung parameters and heart rate, and to decrease anger levels, thus enhancing health-related quality of life in pregnant women with bronchial asthma. Copyright (c) 2006 S. Karger AG, Basel

    Indirect evaluation of Mars Gravity Model 2011 using a replication experiment on Earth

    Get PDF
    Curtin University’s Mars Gravity Model 2011 (MGM2011) is a high-resolution composite set of gravity field functionals that uses topography-implied gravity effects at medium- and short-scales (~125 km to ~3 km) to augment the space-collected MRO110B2 gravity model. Ground-truth gravity observations that could be used for direct validation of MGM2011 are not available on Mars’s surface. To indirectly evaluate MGM2011 and its modelling principles, an as-close-as-possible replication of the MGM2011 modelling approach was performed on Earth as the planetary body with most detailed gravity field knowledge available. Comparisons among six ground-truth data sets (gravity disturbances, quasigeoid undulations and vertical deflections) and the MGM2011-replication over Europe and North America show unanimously that topography-implied gravity information improves upon space-collected gravity models over areas with rugged terrain. The improvements are ~55% and ~67% for gravity disturbances, ~12% and ~47% for quasigeoid undulations, and ~30% to ~50% for vertical deflections. Given that the correlation between space-collected gravity and topography is higher for Mars than Earth at spatial scales of a few 100 km, topography-implied gravity effects are more dominant on Mars. It is therefore reasonable to infer that the MGM2011 modelling approach is suitable, offering an improvement over space-collected Martian gravity field models

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure
    corecore