349 research outputs found
Equilibrium and nonequilibrium properties associated with the chiral phase transition at finite density in the Gross-Neveu Model
We study the dynamics of the chiral phase transition at finite density in the
Gross-Neveu (GN) model in the leading order in large-N approximation. The phase
structure of the GN model in this approximation has the property that there is
a tricritical point at a fixed temperature and chemical potential separating
regions where the chiral transition is first order from that where it is second
order. We consider evolutions starting in local thermal and chemical
equilibrium in the massless unbroken phase for conditions pertaining to
traversing a first or second order phase transition. We assume boost invariant
kinematics and determine the evolution of the order parameter , the
energy density and pressure as well as the effective temperature, chemical
potential and interpolating number densities as a function of the proper time
. We find that before the phase transition, the system behaves as if it
were an ideal fluid in local thermal equilibrium with equation of state
. After the phase transition, the system quickly reaches its true
broken symmetry vacuum value for the fermion mass and for the energy density.
The single particle distribution functions for Fermions and anti-Fermions go
far out of equilibrium as soon as the plasma traverses the chiral phase
transition. We have also determined the spatial dependence of the "pion"
Green's function as a function of the proper time.Comment: 39 pages, 23 figure
A Two-Dimensional Model with Chiral Condensates and Cooper Pairs Having QCD-like Phase Structure
We describe how a generalization of the original Gross-Neveu model from U(N)
to O(N) flavor symmetry leads to the appearance of a pairing condensate at high
density, in agreement with the conjectured phenomenon of color
superconductivity in -dimensional QCD. Moreover, the model displays a
rich phase structure which closely resembles the one expected in two-flavor
QCD.Comment: 11 pages, 1 fugure, Presented at TMU-Yale Symposium on Dynamics of
Gauge Fields: An External Activity of APCTP, Tokyo, Japan, 13-15 Dec 199
Observing many body effects on lepton pair production from low mass enhancement and flow at RHIC and LHC energies
The spectral function at finite temperature calculated using the
real-time formalism of thermal field theory is used to evaluate the low mass
dilepton spectra. The analytic structure of the propagator is studied
and contributions to the dilepton yield in the region below the bare
peak from the different cuts in the spectral function are discussed. The
space-time integrated yield shows significant enhancement in the region below
the bare peak in the invariant mass spectra. It is argued that the
variation of the inverse slope of the transverse mass () distribution can
be used as an efficient tool to predict the presence of two different phases of
the matter during the evolution of the system. Sensitivity of the effective
temperature obtained from the slopes of the spectra to the medium effects
are studied
Baryon stopping and strange baryon/antibaryon production at SPS energies
The amount of proton stopping in central Pb+Pb collisions from 20-160 AGeV as
well as hyperon and antihyperon rapidity distributions are calculated within
the UrQMD model in comparison to experimental data at 40, 80 and 160 AGeV taken
recently from the NA49 collaboration. Furthermore, the amount of baryon
stopping at 160 AGeV for Pb+Pb collisions is studied as a function of
centrality in comparison to the NA49 data. We find that the strange baryon
yield is reasonably described for central collisions, however, the rapidity
distributions are somewhat more narrow than the data. Moreover, the
experimental antihyperon rapidity distributions at 40, 80 and 160 AGeV are
underestimated by up to factors of 3 - depending on the annihilation cross
section employed - which might be addressed to missing multi-meson fusion
channels in the UrQMD model.Comment: 18 pages, including 7 eps figures, to be published in Phys. Rev.
Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze out
We investigate the effect of early chemical freeze-out on radial flow,
elliptic flow and HBT radii by using a fully three dimensional hydrodynamic
model. When we take account of the early chemical freeze-out, the space-time
evolution of temperature in the hadron phase is considerably different from the
conventional model in which chemical equilibrium is always assumed. As a
result, we find that radial and elliptic flows are suppressed and that the
lifetime and the spatial size of the fluid are reduced. We analyze the p_t
spectrum, the differential elliptic flow, and the HBT radii at the RHIC energy
by using hydrodynamics with chemically non-equilibrium equation of state.Comment: One subsection and two figures adde
First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon
We report the first measurement of coherent elastic neutrino-nucleus
scattering (\cevns) on argon using a liquid argon detector at the Oak Ridge
National Laboratory Spallation Neutron Source. Two independent analyses prefer
\cevns over the background-only null hypothesis with greater than
significance. The measured cross section, averaged over the incident neutrino
flux, is (2.2 0.7) 10 cm -- consistent with the
standard model prediction. The neutron-number dependence of this result,
together with that from our previous measurement on CsI, confirms the existence
of the \cevns process and provides improved constraints on non-standard
neutrino interactions.Comment: 8 pages, 5 figures with 2 pages, 6 figures supplementary material V3:
fixes to figs 3,4 V4: fix typo in table 1, V5: replaced missing appendix, V6:
fix Eq 1, new fig 3, V7 final version, updated with final revision
Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory
The quantum time evolution of \phi^4-field theory for a spatially homogeneous
system in 2+1 space-time dimensions is investigated numerically for
out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym
equations including the tadpole and sunset self-energies. Whereas the tadpole
self-energy yields a dynamical mass, the sunset self-energy is responsible for
dissipation and an equilibration of the system. In particular we address the
dynamics of the spectral (`off-shell') distributions of the excited quantum
modes and the different phases in the approach to equilibrium described by
Kubo-Martin-Schwinger relations for thermal equilibrium states. The
investigation explicitly demonstrates that the only translation invariant
solutions representing the stationary fixed points of the coupled equation of
motions are those of full thermal equilibrium. They agree with those extracted
from the time integration of the Kadanoff-Baym equations in the long time
limit. Furthermore, a detailed comparison of the full quantum dynamics to more
approximate and simple schemes like that of a standard kinetic (on-shell)
Boltzmann equation is performed. Our analysis shows that the consistent
inclusion of the dynamical spectral function has a significant impact on
relaxation phenomena. The different time scales, that are involved in the
dynamical quantum evolution towards a complete thermalized state, are discussed
in detail. We find that far off-shell 1 3 processes are responsible for
chemical equilibration, which is missed in the Boltzmann limit. Finally, we
address briefly the case of (bare) massless fields. For sufficiently large
couplings we observe the onset of Bose condensation, where our scheme
within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure
Heavy Quarkonium Physics
This report is the result of the collaboration and research effort of the
Quarkonium Working Group over the last three years. It provides a comprehensive
overview of the state of the art in heavy-quarkonium theory and experiment,
covering quarkonium spectroscopy, decay, and production, the determination of
QCD parameters from quarkonium observables, quarkonia in media, and the effects
on quarkonia of physics beyond the Standard Model. An introduction to common
theoretical and experimental tools is included. Future opportunities for
research in quarkonium physics are also discussed.Comment: xviii + 487 pages, 260 figures. The full text is also available at
the Quarkonium Working Group web page: http://www.qwg.to.infn.i
Inhomogeneous Superconductivity in Condensed Matter and QCD
Inhomogeneous superconductivity arises when the species participating in the
pairing phenomenon have different Fermi surfaces with a large enough
separation. In these conditions it could be more favorable for each of the
pairing fermions to stay close to its Fermi surface and, differently from the
usual BCS state, for the Cooper pair to have a non zero total momentum. For
this reason in this state the gap varies in space, the ground state is
inhomogeneous and a crystalline structure might be formed. This situation was
considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and
the corresponding state is called LOFF. The spontaneous breaking of the space
symmetries in the vacuum state is a characteristic feature of this phase and is
associated to the presence of long wave-length excitations of zero mass. The
situation described here is of interest both in solid state and in elementary
particle physics, in particular in Quantum Chromo-Dynamics at high density and
small temperature. In this review we present the theoretical approach to the
LOFF state and its phenomenological applications using the language of the
effective field theories.Comment: RevTex, 83 pages, 26 figures. Submitted to Review of Modern Physic
Cross-Talk between Signaling Pathways Can Generate Robust Oscillations in Calcium and cAMP
BACKGROUND:To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS:Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP) and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION:We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists
- âŠ