23 research outputs found

    WHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-6 2009 mooring turnaround cruise report

    Get PDF
    The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaiian Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first WHOTS mooring (WHOTS-1) was deployed in August 2004. Turnaround cruises for successive moorings (WHOTS-2 through WHOTS-5) have typically been in either June or July. This report documents recovery of the WHOTS-5 mooring and deployment of the sixth mooring (WHOTS-6). The moorings utilize Surlyn foam buoys as the surface element and are outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the mooring is outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii (UH). A pCO2 system is installed on the buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. Dr. Frank Bradley, CSIRO, Australia, assisted with meteorological sensor comparisons. A NOAA “Teacher at Sea” and a NOAA “Teacher in the Lab” participated in the cruise. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-09-16, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution in cooperation with UH and NOAA’s Earth System Research Laboratory, Physical Sciences Division (ESRL/PSD). The cruise took place between 9 and 17 July 2009. Operations began with deployment of the WHOTS-6 mooring on 10 July at approximately 22°40.0'N, 157°57.0'W in 4758 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-6 and WHOTS-5 sites. The WHOTS-5 mooring was recovered on 15 July 2009. The Kilo Moana then moved to the HOT central site (22°45.0'N, 158°00.0'W) for CTD casts. This report describes the cruise operations in more detail, as well as some of the in-port operations and pre-cruise buoy preparations.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR)

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Risk factors of migraine-related brain white matter hyperintensities: an investigation of 186 patients

    Get PDF
    Brain white matter hyperintensities are more prevalent in migraine patients than in the general population, but the pathogenesis and the risk factors of these hyperintensities are not fully elucidated. The authors analyzed the routine clinical data of 186 migraine patients who were referred to the Outpatient Headache Department of the Department of Neurology, Medical School, University of Pécs, Hungary between 2007 and 2009: 58 patients with white matter hyperintensities and 128 patients without white matter hyperintensities on 3 T MRI. Significant associations between the presence of white matter hyperintensities and longer disease duration (14.4 vs. 19.9 years, p = 0.004), higher headache frequency (4.1 vs. 5.5 attacks/month, p = 0.017), hyperhomocysteinemia (incidence of hyperintensity is 9/9 = 100%, p = 0.009) and thyroid gland dysfunction (incidence of hyperintensity is 8/14 = 57.1%, p = 0.038) were found. These data support the theory that both the disease duration and the attack frequency have a key role in the formation of migraine-related brain white matter hyperintensities, but the effects of comorbid diseases may also contribute to the development of the hyperintensities

    Regional Intensification of the Tropical Hydrological Cycle During ENSO

    No full text
    International audienceThis study provides observational evidence for feedbacks that amplify the short-term hydrological response associated with the warm phase of the El Niño-Southern Oscillation. Our analyses make use of a comprehensive set of independent satellite observations collected over decades to show that much larger local changes to cloud ( 50%/K) and precipitation ( 60%/K) occur than would be expected from the guidance of Clausius-Clapeyron theory ( 7%/K). This amplification comes from atmospheric feedbacks involving shifts in the patterns of latent and radiative heating that mutually act on the dynamics enhancing changes to the hydrological cycle. We also confirm the existence of an opposing negative flux feedback at the ocean surface, driven largely by solar radiation changes, that opposes the surface warming. Estimates of the strength of this and other feedback factors associated with warming in the Niño3 region are provided from observations. These observations are also used to examine comparative processes and feedbacks in model experiments from the Coupled Model Intercomparison Project Phase 5 Atmospheric Model Intercomparison Project

    The Polarized Submillimeter Ice-Cloud Radiometer (PolSIR): Observing the diurnal cycle of ice clouds in the tropics and sub-tropics

    No full text
    International audienceIn May 2023 NASA has selected PolSIR as the latest addition to its Earth Venture Instrument class missions. This presentation will give an overview on PolSIR and its objectives. PolSIR addresses key research priorities related to uncertainties in our current understanding in high clouds and cloud feedbacks as formulated in NASA’s latest Decadal Survey and in the latest Intergovernmental Panel on Climate Change (IPCC) Assessment. In this context, PolSIR will address the following objectives: Constrain the seasonally influenced diurnal cycle amplitude, form, and timing of the ice water path (IWP) and particle diameter in tropical and sub-tropical ice clouds Determine the diurnal variability of ice clouds in the convective outflow areas and understand relation to deep convection Determine the relationship between shortwave and longwave radiative fluxes and the diurnal variability of ice clouds Enable improvement of climate models by providing novel observations of the diurnal cycle of ice clouds, ultimately leading to improved climate modeling skills and increased fidelity of climate forecasts in support of critical decision-making.The PolSIR mission consists of two 12U CubeSats, each equipped with a cross-track scanning polarized submillimeter radiometer in the spectral range of 325–680 GHz. The two PolSIR satellites fly in separate, 52-degree inclination, non-sun-synchronous orbits, taking science measurements between ±35 degrees latitude enabling monthly sampling of the diurnal cycle of ice clouds and their microphysical properties in the tropics and sub-tropics. PolSIR’s observation concept provides significant benefits over the Program of Record (PoR) as well as synergies with future missions which will either be in sun-synchronous orbits, thus not sampling the diurnal cycle, or lack the observation frequencies needed to fully observe ice water path (IWP)

    The Polarized Submillimeter Ice-Cloud Radiometer (PolSIR): Observing the diurnal cycle of ice clouds in the tropics and sub-tropics

    No full text
    International audienceIn May 2023 NASA has selected PolSIR as the latest addition to its Earth Venture Instrument class missions. This presentation will give an overview on PolSIR and its objectives. PolSIR addresses key research priorities related to uncertainties in our current understanding in high clouds and cloud feedbacks as formulated in NASA’s latest Decadal Survey and in the latest Intergovernmental Panel on Climate Change (IPCC) Assessment. In this context, PolSIR will address the following objectives: Constrain the seasonally influenced diurnal cycle amplitude, form, and timing of the ice water path (IWP) and particle diameter in tropical and sub-tropical ice clouds Determine the diurnal variability of ice clouds in the convective outflow areas and understand relation to deep convection Determine the relationship between shortwave and longwave radiative fluxes and the diurnal variability of ice clouds Enable improvement of climate models by providing novel observations of the diurnal cycle of ice clouds, ultimately leading to improved climate modeling skills and increased fidelity of climate forecasts in support of critical decision-making.The PolSIR mission consists of two 12U CubeSats, each equipped with a cross-track scanning polarized submillimeter radiometer in the spectral range of 325–680 GHz. The two PolSIR satellites fly in separate, 52-degree inclination, non-sun-synchronous orbits, taking science measurements between ±35 degrees latitude enabling monthly sampling of the diurnal cycle of ice clouds and their microphysical properties in the tropics and sub-tropics. PolSIR’s observation concept provides significant benefits over the Program of Record (PoR) as well as synergies with future missions which will either be in sun-synchronous orbits, thus not sampling the diurnal cycle, or lack the observation frequencies needed to fully observe ice water path (IWP)
    corecore