108 research outputs found

    Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria

    Get PDF
    Although the physiological relevance of mitochondrial Ca2+ homeostasis is widely accepted, no information is yet available on the molecular identity of the proteins involved in this process. Here we analyzed the role of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane in the transmission of Ca2+ signals between the ER and mitochondria by measuring cytosolic and organelle [Ca2+] with targeted aequorins and Ca2+-sensitive GFPs. In HeLa cells and skeletal myotubes, the transient expression of VDAC enhanced the amplitude of the agonist-dependent increases in mitochondrial matrix Ca2+ concentration by allowing the fast diffusion of Ca2+ from ER release sites to the inner mitochondrial membrane. Indeed, high speed imaging of mitochondrial and cytosolic [Ca2+] changes showed that the delay between the rises occurring in the two compartments is significantly shorter in VDAC-overexpressing cells. As to the functional consequences, VDAC-overexpressing cells are more susceptible to ceramide-induced cell death, thus confirming that mitochondrial Ca2+ uptake plays a key role in the process of apoptosis. These results reveal a novel function for the widely expressed VDAC channel, identifying it as a molecular component of the routes for Ca2+ transport across the mitochondrial membranes

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    A multicenter epidemiological study on second malignancy in non-syndromic pheochromocytoma/paraganglioma patients in Italy

    Get PDF
    SIMPLE SUMMARY: As no previous studies had assessed the risk of second malignant tumors in patients with pheochromocytomas/paragangliomas (PPGLs), we aimed to evaluate whether these patients could have an increased risk of additional malignancy, comparing them with patients in the general population who had a first malignancy and developed a second malignant tumor. We demonstrated that PPGL patients had higher incidence of additional malignant tumors and the risk of developing a second malignant tumor increased with age at diagnosis. As the main tumors were prostate, colorectal and lung/bronchial cancers in males, and breast cancer, differentiated thyroid cancer and melanoma in females, our findings could have an impact on the surveillance strategy. ABSTRACT: No studies have carried out an extensive analysis of the possible association between non-syndromic pheochromocytomas and paragangliomas (PPGLs) and other malignancies. To assess >the risk of additional malignancy in PPGL, we retrospectively evaluated 741 patients with PPGLs followed-up in twelve referral centers in Italy. Incidence of second malignant tumors was compared between this cohort and Italian patients with two subsequent malignancies. Among our patients, 95 (12.8%) developed a second malignant tumor, which were mainly prostate, colorectal and lung/bronchial cancers in males, breast cancer, differentiated thyroid cancer and melanoma in females. The standardized incidence ratio was 9.59 (95% CI 5.46–15.71) in males and 13.21 (95% CI 7.52–21.63) in females. At multivariable analysis, the risk of developing a second malignant tumor increased with age at diagnosis (HR 2.50, 95% CI 1.15–5.44, p = 0.021 for 50–59 vs. 60- vs. <50-year). In patients with available genetic evaluation, a positive genetic test was inversely associated with the risk of developing a second tumor (HR 0.25, 95% CI 0.10–0.63, p = 0.003). In conclusion, PPGLs patients have higher incidence of additional malignant tumors compared to the general population who had a first malignancy, which could have an impact on the surveillance strategy

    Plasma sphingosine-1-phosphate is elevated in obesity

    Get PDF
    Background: Dysfunctional lipid metabolism is a hallmark of obesity and insulin resistance and a risk factor for various cardiovascular and metabolic complications. In addition to the well known increase in plasma triglycerides and free fatty acids, recent work in humans and rodents has shown that obesity is associated with elevations in the bioactive class of sphingolipids known as ceramides. However, in obesity little is known about the plasma concentrations of sphinogsine-1-phosphate (S1P), the breakdown product of ceramide, which is an important signaling molecule in mammalian biology. Therefore, the purpose of this study was to examine the impact of obesity on circulating S1P concentration and its relationship with markers of glucose metabolism and insulin sensitivity. Methodology/Principal Findings: Plasma S1P levels were determined in high-fat diet (HFD)-induced and genetically obese (ob/ob) mice along with obese humans. Circulating S1P was elevated in both obese mouse models and in obese humans compared with lean healthy controls. Furthermore, in humans, plasma S1P positively correlated with total body fat percentage, body mass index (BMI), waist circumference, fasting insulin, HOMA-IR, HbA1c (%), total and LDL cholesterol. In addition, fasting increased plasma S1P levels in lean healthy mice. Conclusion: We show that elevations in plasma S1P are a feature of both human and rodent obesity and correlate with metabolic abnormalities such as adiposity and insulin resistance

    Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas

    Get PDF
    Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours with a hereditary background inover one-third of patients. Mutations in succinate dehydrogenase (SDH) genes increase the risk for PPGLs and severalother tumours. Mutations in subunit B (SDHB) in particular are a risk factor for metastatic disease, further highlight-ing the importance of identifying SDHx mutations for patient management. Genetic variants of unknown signi-cance, where implications for the patient and family members are unclear, are a problem for interpretation. Forsuch cases, reliable methods for evaluating protein functionality are required. Immunohistochemistry for SDHB(SDHB-IHC) is the method of choice but does not assess functionality at the enzymatic level. Liquid chromatogra-phy–mass spectrometry-based measurements of metabolite precursors and products of enzymatic reactions providean alternative method. Here, we compare SDHB-IHC with metabolite proling in 189 tumours from 187 PPGLpatients. Besides evaluating succinate:fumarate ratios (SFRs), machine learning algorithms were developed to estab-lish predictive models for interpreting metabolite data. Metabolite proling showed higher diagnostic specicitycompared to SDHB-IHC (99.2% versus 92.5%, p = 0.021), whereas sensitivity was comparable. Application of machine learning algorithms to metabolite proles improved predictive ability over that of the SFR, in particular forhard-to-interpret cases of head and neck paragangliomas (AUC 0.9821 versus 0.9613, p = 0.044). Importantly, thecombination of metabolite proling with SDHB-IHC has complementary utility, as SDHB-IHC correctly classied allbut one of the false negatives from metabolite proling strategies, while metabolite proling correctly classied allbut one of the false negatives/positives from SDHB-IHC. From 186 tumours with conrmed status of SDHx variantpathogenicity, the combination of the two methods resulted in 185 correct predictions, highlighting the benets ofboth strategies for patient management

    Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/ mTOR axis in metastatic pheochromocytoma/ paraganglioma

    Get PDF
    Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients’ liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients’ management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors
    • 

    corecore