131 research outputs found

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Search for dark photons in rare Z boson decays with the ATLAS detector

    Get PDF
    A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139     fb − 1 of √ s = 13     TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon’s coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α D ϵ 2 , in the dark photon mass range of [5, 40] GeV except for the Υ mass window [8.8, 11.1] GeV. This search explores new parameter space not previously excluded by other experiments

    Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS

    No full text

    Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC

    Get PDF
    International audienceMeasurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analysesare subject to `fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-leptonselection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particleinteractions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods.Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance

    Study of Z → llγ decays at √s=8 TeV with the ATLAS detector

    No full text

    Measurement of the B0s → μμ effective lifetime with the ATLAS detector

    No full text

    Measurement of the t t ¯ cross section and its ratio to the Z production cross section using pp collisions at s = 13.6 TeV with the ATLAS detector

    No full text
    corecore