2,187 research outputs found

    Dry port location optimization to foster sustainable regional development

    Get PDF
    The saturation of hinterland accentuates adverse environmental impacts and socio-spatial conflicts, demanding logistical alternatives. As a solution, the dry port enables the decentralization of customs, handling, and storage operations, which mitigates part of the problems, in addition to stimulating the economy in the region where it operates. Thus, its location is crucial for the efficiency of import and export logistic systems. This paper aimed to evaluate the spatial distribution of dry ports in Minas Gerais, Brazil, and to identify the best locations for a new installation. The methodology put together two recognized methods for location definition: the Spatial Multicriteria Analysis and the Location-Allocation Problem. The first, in line with the most current practices in transportation planning, integrated social, environmental and technical criteria. The second adopted the first’s result as weighted demand and applied a metaheuristic to solve an optimization problem. Findings show the regional disparity and the deficiency of logistic infrastructures in the north of Minas Gerais. All scenarios point to the Montes Claros region as a candidate for the installation of a dry port. The possibility of reconciling society, environment and economy in infrastructure planning was demonstrated.  A saturação das zonas de influência portuária acentua impactos ambientais e conflitos socioespaciais, demandando alternativas logísticas. O porto seco possibilita a descentralização de atividades aduaneiras, de manuseio e armazenagem, mitigando parte dos problemas, além de estimular a economia na região onde é inserido. Dessa forma, a sua localização é crucial para a eficiência dos sistemas logísticos de importação e exportação. O objetivo deste trabalho foi avaliar a distribuição espacial dos portos secos em Minas Gerais e identificar os melhores locais para uma nova instalação. A metodologia agregou dois métodos reconhecidos de definição locacional: a Análise Multicritério Espacial e o Problema de Localização-Alocação. O primeiro, em consonância com as práticas mais atuais no planejamento de transporte, integrou critérios sociais, ambientais e técnicos. O segundo, adotou o resultado da análise multicritério como demanda ponderada e aplicou uma meta heurística para solução do problema de otimização. Os resultados evidenciam a disparidade regional e a deficiência de infraestruturas logísticas no norte de Minas. Todos os cenários apontam a região de Montes Claros como candidata à instalação de um porto seco. A possibilidade de conciliar sociedade, ambiente e economia no planejamento de infraestrutura foi demonstrada

    Systematic detection of putative tumor suppressor genes through the combined use of exome and transcriptome sequencing

    Get PDF
    Abstract Background To identify potential tumor suppressor genes, genome-wide data from exome and transcriptome sequencing were combined to search for genes with loss of heterozygosity and allele-specific expression. The analysis was conducted on the breast cancer cell line HCC1954, and a lymphoblast cell line from the same individual, HCC1954BL. Results By comparing exome sequences from the two cell lines, we identified loss of heterozygosity events at 403 genes in HCC1954 and at one gene in HCC1954BL. The combination of exome and transcriptome sequence data also revealed 86 and 50 genes with allele specific expression events in HCC1954 and HCC1954BL, which comprise 5.4% and 2.6% of genes surveyed, respectively. Many of these genes identified by loss of heterozygosity and allele-specific expression are known or putative tumor suppressor genes, such as BRCA1, MSH3 and SETX, which participate in DNA repair pathways. Conclusions Our results demonstrate that the combined application of high throughput sequencing to exome and allele-specific transcriptome analysis can reveal genes with known tumor suppressor characteristics, and a shortlist of novel candidates for the study of tumor suppressor activities

    Pentoxifylline associated to hypertonic saline solution attenuates inflammatory process and apoptosis after intestinal ischemia/reperfusion in rats

    Get PDF
    PURPOSE:To evaluate intestinal inflammatory and apoptotic processes after intestinal ischemia/reperfusion injury, modulated by pentoxifylline and hypertonic saline.METHODS:It was allocated into four groups (n=6), 24 male Wistar rats (200 to 250g) and submitted to intestinal ischemia for 40 min and reperfusion for 80 min: IR (did not receive any treatment); HS group (Hypertonic Saline, 4ml/kg-IV); PTX group (Pentoxifylline, 30mg/kg-IV); HS+PTX group (Hypertonic Saline and Pentoxifylline). All animals were heparinized (100U/kg). At the end of reperfusion, ileal fragments were removed and stained on hematoxylin-eosin and histochemical studies for COX-2, Bcl-2 and cleaved caspase-3.RESULTS:The values of sO2 were higher on treated groups at 40 minutes of reperfusion (p=0.0081) and 80 minutes of reperfusion (p=0.0072). Serum lactate values were lower on treated groups after 40 minutes of reperfusion (p=0.0003) and 80 minutes of reperfusion (p=0.0098). Morphologic tissue injuries showed higher grades on IR group versus other groups: HS (p=0.0006), PTX (p=0.0433) and HS+PTX (p=0.0040). The histochemical study showed lesser expression of COX-2 (p=0.0015) and Bcl-2 (p=0.0012) on HS+PTX group. A lower expression of cleaved caspase-3 was demonstrated in PTX (p=0.0090; PTXvsIR).CONCLUSION:The combined use of pentoxifylline and hypertonic saline offers best results on inflammatory and apoptotic inhibitory aspects after intestinal ischemia/reperfusion.São Paulo University Medical SchoolUSP Medical SchoolFederal University of São Paulo Medical SchoolUSP School of MedicineUSP School of Medicine Department of SurgeryUSP Medical School Department of SurgeryUNIFESP, Medical SchoolSciEL

    Distinct patterns of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual

    Get PDF
    Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein–protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation

    Distinct patterns of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual

    Get PDF
    Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein–protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation
    corecore