7,013 research outputs found

    The Nature of Man: A Philosopher\u27s Viewpoint

    Get PDF

    Screening actuator locations for static shape control

    Get PDF
    Correction of shape distortion due to zero-mean normally distributed errors in structural sizes which are random variables is examined. A bound on the maximum improvement in the expected value of the root-mean-square shape error is obtained. The shape correction associated with the optimal actuators is also characterized. An actuator effectiveness index is developed and shown to be helpful in screening actuator locations in the structure. The results are specialized to a simple form for truss structures composed of nominally identical members. The bound and effectiveness index are tested on a 55-m radiometer antenna truss structure. It is found that previously obtained results for optimum actuators had a performance close to the bound obtained here. Furthermore, the actuators associated with the optimum design are shown to have high effectiveness indices. Since only a small fraction of truss elements tend to have high effectiveness indices, the proposed screening procedure can greatly reduce the number of truss members that need to be considered as actuator sites

    The contact conductance of a one-dimensional wire partly embedded in a superconductor

    Full text link
    The conductance through a semi-infinite one-dimensional wire, partly embedded in a superconducting bulk electrode, is studied. When the electron-electron interactions within the wire are strongly repulsive, the wire effectively decouples from the superconductor. If they are moderately or weakly repulsive, the proximity of the superconductor induces superconducting order in the segment of the wire embedded in it. In this case it is shown that the conductance exhibits a crossover from conductive to insulating behavior as the temperature is lowered down. The characteristic crossover temperature of this transition has a stretched exponential dependence on the length of the part of the wire embedded in the superconductor. The amount of this stretch is determined by the nature of the electron interactions within the wire.Comment: 8 pages, 4 figure

    Analogue RF over fibre links for future radar systems

    Get PDF
    The distribution of analogue RF signals within a high performance radar system is challenging due to the limited space available and the high levels of performance required. This work investigates the gain, linearity and noise performance that can be achieved by an externally modulated direct detection link designed for operation up to 20 GHz using commercially available components. The aim was to assess the suitability of such links for use in future radar systems. Good correlation has been shown between modelled and measured results demonstrating that the performance should satisfy the linearity requirements for many radar applications

    A compressive failure model for anisotropic plates with a cutout under compressive and shear loads

    Get PDF
    Failure models for the prediction of compressive strength of plates with a hole are investigated. One of the models is based on the strength failure of the fibers that leads to fiber kinking failure. A different version is developed for cases where shear failure of the fibers is expected to be a dominate failure mode. Both models are capable of including the effects of combined shearing and compressive stresses around a hole in a plate and, therefore, are expected to be applicable to plates under combined shearing and compressive loadings, as well as anisotropic plates

    Stacking-sequence optimization for buckling of laminated plates by integer programming

    Get PDF
    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm

    Computational aspects of sensitivity calculations in transient structural analysis

    Get PDF
    A key step in the application of formal automated design techniques to structures under transient loading is the calculation of sensitivities of response quantities to the design parameters. This paper considers structures with general forms of damping acted on by general transient loading and addresses issues of computational errors and computational efficiency. The equations of motion are reduced using the traditional basis of vibration modes and then integrated using a highly accurate, explicit integration technique. A critical point constraint formulation is used to place constraints on the magnitude of each response quantity as a function of time. Three different techniques for calculating sensitivities of the critical point constraints are presented. The first two are based on the straightforward application of the forward and central difference operators, respectively. The third is based on explicit differentiation of the equations of motion. Condition errors, finite difference truncation errors, and modal convergence errors for the three techniques are compared by applying them to a simple five-span-beam problem. Sensitivity results are presented for two different transient loading conditions and for both damped and undamped cases

    Reducing distortion and internal forces in truss structures by member exchanges

    Get PDF
    Manufacturing errors in the length of members or joint diameters of large truss reflector backup structures may result in unacceptable large distortion errors or member forces. However, it may be possible to accurately measure these length or diameter errors. The present work suggests that a member and joint placement strategy may be used to reduce distortion errors and internal member forces. A member and joint exchange algorithm is used to demonstrate the potential of this approach on several 102-member and 660-member truss reflector structures. It is shown that it is possible to simultaneously reduce the rms of the surface error and the rms of member forces by two orders of magnitude by member and joint exchanges

    Development of higher-order modal methods for transient thermal and structural analysis

    Get PDF
    A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements

    Recent developments in structural sensitivity analysis

    Get PDF
    Recent developments are reviewed in two major areas of structural sensitivity analysis: sensitivity of static and transient response; and sensitivity of vibration and buckling eigenproblems. Recent developments from the standpoint of computational cost, accuracy, and ease of implementation are presented. In the area of static response, current interest is focused on sensitivity to shape variation and sensitivity of nonlinear response. Two general approaches are used for computing sensitivities: differentiation of the continuum equations followed by discretization, and the reverse approach of discretization followed by differentiation. It is shown that the choice of methods has important accuracy and implementation implications. In the area of eigenproblem sensitivity, there is a great deal of interest and significant progress in sensitivity of problems with repeated eigenvalues. In addition to reviewing recent contributions in this area, the paper raises the issue of differentiability and continuity associated with the occurrence of repeated eigenvalues
    corecore