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ABSTRACT

The paper presents and evaluates a force-derivative method which
produces higher-order modal solutions to transient problems. These
higher-order solutions converge to an accurate response using fewer
.degrees-of-freedom (eigenmodes) than lower-order methods such as the
mode-displacement or mode-acceleration methods. Results are presented
for non-proportionally damped structural problems as well as thermal
problems modeled by finite elements.
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SYMBOLS

damping matrix
modulus of elasticity
spatial error norm (eq. (34))

stiffness matrix

generalized stiffness matrix, conductance matrix

mass matrix, moment

subset of total number of degrees-of-freedom

generalized mass matrix, capacitance matrix

-total number of degrees-of-freedom

force vector

generalized force or thermal load vector

modal éoordinates of the second-order system
time

disp-lacement

coordinate direction

genefalized displacement or temperature vector

modal coordinates of the first-order system



o ith damped eigenvalue (egs. (3) and (4))
[o] matrix of damped eigenvalues
®; ith damped eigenvector
[CI)] matrix of damped eigenvectors
.¢; ith normal eigenvector (eq. (21))
€ time-integrated error norm defined in eq. (33)
Q matrix of frequencies squared (eq. (23))
; ith circular ha.tural frequency
wgi ith circular frequency of the damped free vibration
A matrix of damping coefficients (eq. (23))
p density
T dummy variable of integration, temporal integral limit
(eq. (33))
i ith modal viscous damping factor
Subscripts
0 initial



Superscripts
a approximate
(i)  ith derivative with respect to time

matrix of reduced number of eigenvectors or eigenvalues
or reduced number of modal coordinates



INTRODUCTION

Transient thermal and structural analyses of complicated engineering
problems which are modeled as discrete multidegree-of-freedom systems
often require the solution of very large systems of equations. Reducing the
order of such systems is highly desirable from the standpoint of increased
computational efficiency. Some of the many methods for reducing the
order of discrete multidegree-of-freedom structural dynamic systems
include mass condensation methods (e.g., refs. 1 and 2) and reduced basis
methods (e.g., refs. 3-7). The reduced basis methods use either a truncated
set of basis vectors (e.g. eigenmodes, Ritz vectors, or Lanczos vectors) or a
combination of basis vectors (e.g., eigenmodes and Ritz vectors (ref. 8)).
Reduced basis methods have also been applied in solving transient thermal
problems (refs. 9-11). Some problems, such as the thermal/structural
analysis of space transportation systems or large space structures, require
a large number of basis vectors to accurately represent the transient
response. In addition, when singularities occur in the loading, convergence
of a solution is not guaranteed. For most transient thermal problems, it
takes a large number of eigenmodes to accurately model the sharp thermal
gradients within the domain (ref. 10).

When a reduced basis method uses the eigenmodes of a system of
equations the method is referred to as a modal method. Two of the most
widely used modal methods for transient structural analysis are the mode-
displacement method (MDM) and the mode-acceleration method (MAM).
It was shown in reference 12, that the MAM can be considered a higher-
order modal method than the MDM and that the MAM converges to an
accurate solution using fewer modes than the MDM (refs. 6 and 12). A
method for generating improved or higher-order modal methods was
developed in reference 7. This method was generalized to proportionally-
damped structures (the damping matrix is a linear function of the stiffness
and mass matrices) and evaluated for a variety of loads and damping
ratios (ref. 12). This new method successively integrates-by-parts the
convolution integral form of the solution and is called the force-derivative
method (FDM) because it produces terms which are related to the forcing
function and its time derivatives. The FDM was found to be more accurate
than either the MDM or MAM. In particular, for problems in which there
are a large number of closely-spaced frequencies (e.g., large truss-type
- space structures or multispan beams) the FDM is very effective in
representing the important, but otherwise neglected, higher modes. Recent
work indicates that the FDM, which was based on reference 7, has several
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variants (refs. 13 and 14) for solving transient structural problems. One
such variant is called the dynamic-correction method (DCM) (ref.13) which
is useful when a particular solution exists for a given forcing function.

The purpose of the present paper is to extend the work of reference 12 to
include non-proportionally damped structural systems and to evaluate the
usefulness of the FDM in solving non-proportionally damped structural
problems as well as thermal problems. Modal methods evaluated include
the MDM, MAM, FDM, and the DCM.



THEORY
First-Order or Damped-Mode Formulation

The equations of motion, in matrix form, of an n degrees of freedom
system, together with the initial conditions are given by

Mii+ Cu + K u=Q(t) (1)
u(0) = ug_ u(0) = 1

where M, C, and K are the mass, damping, and stiffness matrices of the
system; u and Q are the displacement and load vectors, respectively, and a
dot denotes differentiation with respect to time.

Transforming eq. (1) to first-order form results in the following system of
equations: '

MY+RY=0Q Y0) =Y, (2)

where

and



Assuming a solution to the homogenuous form of eq. (2) as:

a

ot
Yt)= e D (3)

results in an eigenvalue problem

oa,M® +K &, =0, (4)

For distinct eigenvalues (o), the eigenvectors (®) are normalized such
that

T _
(DrM (Dr:" 1.0

and then (5)

@r K (Dr ='—'ar

Equation (5) can also be written in matrix form as

[©]M[®]=[1] and [®]R[®]=[a]

where [<I)] is a 2n by 2n modal matrix with its ith column equal to ®; 44

[oc] is a diagonal matrix consisting of the o's.



A solution to eq. (2) is assumed in the form of the following modal
summation

2n
Y)= ) ®r Zi(t) (6)

r=1

T
Substituting eq. (6) into eq. (2) with premultiplication by @ results in the

following, uncoupled, system of equations:
. T _
Zi-0,Z =P Q ' (7)
T _
2,0)=Zyp=Pr MY,

The solution to eq. (7) is

t
ot or(t-T) T _
Z(t) = Zro € + Je d)r Q(T)dt (8)
0

Hence, the solution of eq. (2) becomes

2n

t
E ot e(t-
Y(@) = D Z,o ea + Ojea ( T)F,('c)dt (9)

r=1

where

T_
Fr(fr) = 0 Q(1)



If the forcing function has continuous derivatives, the convolution integral
of eq. (9) can be integrated by parts to produce higher-order modal
methods (ref. 12). For example, if it is integrated by parts once, the
following expression results

2n

F.(0 ot O F (t

Y(t) = E @,[zr0+ —:i:-)-]e - —’T'r(——)
r=1

t

o, o (t-T) .

+Er-0 e F,(1)dT1) (10)

If all the modes are used in the second-to-last term .in eq. (10), this term
can be written as

i o o JFuw = -[] [T R Q0 Can
r=1

if equation (11) is substituted into equation (10), the resulting expression
is analogous to the MAM (ref. 6) and can be written as
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2n

t
F(0)] &t @, or(t-T) .
Y(t) = E (Dr[zm+ —ar—]e + oz: Ofe F (t)dT

r=1

-1
+K Q) (12)

If the forcing function has continuous derivatives up to order N (CN ), the
convolution integral of eq. (9) can be integrated-by-parts N-times,
resulting in the following expression

2n c N —
(i-1) ¢ @ t (t-1)
F.(0 o or(t-
Y(t) = ﬁ &, Zyo -'(—l-)- e  + — Je ‘ F(,I\I)(‘t)d‘c
, o, o,
. L i=1 .
r=1
N
® (i-1)
F.(t
) I ir() (13)
Oy
i=1

where the superscript (i-1) denotes the (i-1)th derivative.
If all the modes are used in the last N-terms of eq. (13), they can be

represented as functions of M and K (ref. 12) as follows
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N
0y @ (t-1)
F.(0 ort or(t-T

Y(t) = O, Zo+ -’-(1—)- e+ ~ Ofe FV(1)dt

o Oy
L i=1 ' -
r=1
N

Z RN SN
2 k™) K ap (14)

Alternate Damped-Mode Formulation

Equations 8 to 14 are analogous to those presented in reference 12,
however, the present expressions solve a first-order system of equations,
using the damped modes P to decouple a non-proportionally damped
system (the damping matrix is not a linear function of the mass and
stiffness matrices). This means the order of the system of equations is
doubled (2n). Equation 14 represents a means for developing higher-order
modal methods than either the MDM or MAM, as demonstrated in
reference 12, and is called the force-derivative method (FDM) because it
produces terms which are related to the forcing function and its time
derivatives.

Equation 2 can also be considered to represent a heat conduction problem

where, for that problem, M would represent the capacitance matrix, K

would represent the conductance matrix, Q represents the thermal load
vector, and Y is the vector of nodal temperatures.

The MDM uses a subset, m (m < 2n), of the eigenmodes to reduce the size of
the problem and solves for Zr using eq. (8) and substitutes these values
into a reduced modal summation in eq. (6) to approximate the response,
Y(t). The MDM can be classified as a zeroth-order method because it is
equivalent to using the FDM (eq. (14)) with N = 0. An analogous form of the
MAM uses eq. (12), and a reduced modal summation to approximate Y(t)
and can be classified as a first-order method (N = 1 in eq. (14)). The FDM
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uses eq. (14) with N>1. Reference 12 showed that the expressions obtained
with four integrations by parts offer improved approximations to the
higher, neglected, modes for several structural problems.

The FDM (eq. (14)) can be derived using an approach similar to that used
in reference 13 which results in a form which is more suitable for inclusion
into existing thermal and structural analysis codes. A numerical approach
can be derived, similar to that presented in reference 13, which
approximates the forcing function as a piecewise differentiable polynomial
and which numerically integrates the reduced system of equations

(eq. (8)). For example, assume the forcing function is C2 differentiable.
Equation 7 could be differentiated twice to produce the following equations

.. . T.
Z - 0472, = ®Q (15a)
(3) . T ..
Ze - o7 =@;Q (15b)

Re-arranging eq. (7) and substituting for ir and Zr from eqs. (15a and 15b)
results in

1 1 T - 1 T =
Z(t) = - "d_q)r Q(t) - '_Z(Dr Q(t) - """3_(Dr Q(t)
' o r
3)
+ 13 Z(r (t) ' (16)
ar

Using eq. (6), the response can be written as
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-1 -1 -1. -1 -1 -1
Y(t) =K Q(t) -K MK Q(t) + K MK MK Q(t)

1 _(3)
£y O3 7, () (17)
o

The last term can be evaluated using eq. (8) and Leibnitz's rule for
differentiation of an integral to produce the following

(3) 5 T_ T. T -
Z, (1) =0 D Q(t) + o, PQ(t) + Dr Q(1)
t

ot or(t-T) T _
+oa Zo € T+ oc? e O, Q(T)dT (18)
0

Y(t) can be approximated using only a subset of the modes for last term in
eq. (17) and using eqs. (8) and (18), eq. (17) becomes

-1 AAT -1 -1 2AT
Y(t)z(l_( 080 )Q(t)+(—l_( MR + 58 @ )Q(t)
1 -1 -1 3 .
JRME MR+ 6878 oo+ &2 (19)

where the A denotes a reduced set of modes (m < 2n) and Z can be
| calculated by numerically integrating eq. (7)

This expression can be expanded, assuming a CN differentiable forcing
function, to
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N
[( ST S S T A-iAT]_(i-l)] AN
Y(t)EE‘ (K M) R +Dod |1 |+DXH (20)
i=1

Compared to eq. (14), the alternate formulation of the FDM (eq. (20)) does
not require the solution of a convolution-type integral. In addition, the
last term of eq. (20) is identical to a mode-displacement solution and as
such the form of the FDM as given by eq. (20) is more suited for inclusion
into existing computer codes.

Second-Order or Natural-Mode Formulation

Expressions which use the undamped natural modes can be developed in
an analogous manner and result in an expression similar to eqs. (19) and
(20). This is accomplished by beginning with the undamped modes of the
second-order system of equations (eq. (1)). The modes, ¢,, are determined
by solving the following eigenvalue problem

Ko, = 070, 21)

The modes are normalized as follows

T
or Mor=1.0
so that

T 2
¢r Kér=
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Hence, the displacement response can be represented as

ut) = Y, ¢.q.(t) (22)

r=1 .

Using eq. (22), and premultiplying eq. (1) by ¢'1r‘ results in

. . 2 T
q+Agq+Q q=[0] Qv (23)

where

A=oT'c[o]

and

- Q2=[0] x[¢]

where [¢] is the matrix of undamped eigenmodes, Q2is a diagonal matrix

whose diagonal terms can be represented as iniz (ozi and, for proportional
damping, A is also a diagonal matrix whose diagonal terms can be
represented as Ajj = 2 ;.
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If we assume the forcing function is C2 differentiable, eq. (23) can be
differentiated twice and back substituted into eq. (23) to produce the
following expression, which is similar to eq. (16)

- - - ) I TN - I, T T
Q) = Q2[¢]TQ<0-QZAQZ[¢]T6+[QZAQZAQ2 -a’q 2]¢ Q
2 - 2 2 - 2 2]
+[QZQ ‘A -07AQAQ%A + 0 2A§22] q &

-2 -2 -2 -2 -21 (4)
+[Q Q7 -Q AQAQ ]q(t) (24)

Assuming proportional damping and zero initial conditions, the solution to
eq. (23) can be written as

t
1 Cro(t-1) T
qr(t) = Ed-:oje sin @dr(t-T)¢rQ(T) dt (25)

where

Wy, =\/(’)3 - (Cr(")r)2

If eq. (25) is differentiated four times with respect to t and the expressions

for q(3) and q(4) are substituted into eq. (24), the entire expression
reduces to the following

17



-1 AT

=k -§8% )Q(t)—(K‘lCK-I 6 8"AEY )5

: [(K-IMK-I Kok ek ). (387677 -5 AR 52$T)]é(t)

YO (26)

Equation (26) agrees with results presented in reference 13 and, as shown
in reference 13, is also valid for non-proportionally damped structural
systems.  Assuming higher-order piecewise differentiable forcing
functions, the method above can produce successively higher-order modal
methods and, as such, is just another formulation of the FDM. The
expression for an Nth-order modal method can be expressed as

(r~l) AA

-
mnszg(BLpl-ALaDQ(n+¢qa) (27)
r=

where
B -1 -1 -1
Br_[Bl,r] K CBp,q-K MBy | Bo_[x }
2.r Bi,r 0
and
-2 -2 -2
AA AT A N A AT A AT
Ar=¢[ ;"]q; =¢[-6 AA - Q A2r-l:l¢ ,/\():(;;[fs2 }q)
T Ay 0
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The Dynamic-Correction Mmethod (DCM)

The dynamic-correctiqn method (DCM), reference 13, assumes a solution to
eq. (2) in the form

Y() = Yp(t) + Yc(t) (28)

where Yp(t) is a particular solution of eq. (2) and Y(t) is the
complimentary solution which represents the effects of initial conditions.
In modal form, Yp(t) and Yc(t) can be represented as

CYp(t) = [@] Zp(t)
and (29)
Y= [@] Zc(®)

where Zp(t) and Zc(t) are the vectors of particular and complimentary
solutions to the modal coordinate equations (eq. (7)).

Using eqgs. (6) and (28)

Y(®) = [®] Z(t) = [®][Z(V) - Zp(1)] + Yp(1) (30)

The fundamental principle of the DCM is that if you have an exact
particular solution to eqs. (2) and (7), you can approximate the response
(eq. (30)) using a re;duced set of modes as shown below

YO =020 + [Yp) - & Zp] (31)
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It can also be shown that in the limit as N goes to infinity, two terms in
equation (20) can be written as

N
A -r _(f'l) A
lim =)-0 | 240 ™) = B2K1)
N—o oo r=1
and (32)
N
-1yl (r-1)
lim = 2((R M) K )cDTQ(t) = Yp(t)
—») 00

Hence, if an infinite number of integrations-by-parts are assumed in the
FDM or if the convolution integral vanishes (e.g., for a polynomial forcing
function of a lower order than the order of the FDM) the FDM would be
equivalent to the DCM of reference 13. Also, if an exact solution to the
convolution integrals of eqs. (8), (12), or (14) exists and is used; the
response can be calculated without errors caused by the approximation of
the forcing function. For the case of a sinusoidal forcing function,
equations (32) will converge as shown above provided the frequency of
the highest mode used in the approximation is larger than the forcing
function frequency.
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RESULTS AND DISCUSSION

Structural Example: Two-Degree-Of-Freedom Problem

A simple, two-degree-of-freedom spring-mass problem (fig. 1) with a
sinusoidal forcing function was analyzed to compare the accuracy of the
MDM, MAM, FDM, and DCM. This problem was also investigated in
reference 13 and included in that reference are the particular solutions for
polynomial as well as sinusoidal forcing functions. As shown in figure 1,
the sinusoidal forcing function, sin(wf¢t), is applied to the second mass. The
natural frequencies are ®;= 19.54 rad/s and ;= 51.17 rad/s. The system
is proportionally damped (A (eq. (23)) is diagonal) if o = K{/K5, (ref. 15). For
the stiffnesses chosen, this corresponds to a value of a = 1.0. The accuracy
of each method is assessed by a time-integrated error norm, which is
defined as

T
JI u;(t) - ud(e)l dt

£ (%) = - - X 100 (33)

I| ui(t) | dt
0

where uj(t) is the calculated response using all the modes and u?(t) is the
approximate response using a subset of the modes. Results were
calculated using both the real and damped modes (eqs. (20) and (27))
respectively. For this problem, the FDM used was of order four (N=4 in egs.
(20) and (27)). The time, T, selected for integrating the error was chosen to
be T = 161/wf.

Results of the error as a function of the forcing frequency for the
undamped modal solution using one real mode for the proportionally-
damped case (o =1.0) is shown in figure 2. In general, the forcing function
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frequency must be lower than the highest natural frequency used in the
approximate modal response for accurate results. As shown in figure 2,
the accuracy increases as the order of the modal method increases. The
results for the lower range of frequencies are shown more clearly in

figure 3, which is an expanded error scale of figure 2, that the FDM (N=4)
and DCM are similar and more accurate than the lower order methods such
as the MDM (N=0) and the MAM (N=1) for wfr < 20 rad/s. For wf> 20 rad/s,
the DCM remains slightly more accurate than the FDM, however, as the
forcing frequency approaches the second natural frequency (wf= 51.17
rad/s) all methods produce inaccurate results. It should be noted that
results using one real mode or two damped modes are identical for the
proportionally-damped case.

Results for the non-proportionally-damped case (ot = 20) using two

damped modes, are shown in figure 4. Results are similar to the
proportionally-damped case with the exception that the DCM exhibits
surprisingly good results at forcing function frequencies close to the second
natural frequency. This result is unexplained at present and is believed to
be fortuitous and, hence, it is recommended that all modal methods should
include modes whose frequencies bound the frequency of the forcing
function. A comparison of the damped-mode solution ( using two damped
modes (eq. (20)) and the undamped solution (using one real mode (eq.
(27)) is shown in figure 5 for the non-proportionally-damped case (o0 =
20). As shown in figure 5, the damped-mode solution using two damped
modes (dashed lines) produces more accurate results than those using only
one real mode (solid lines). The damped-mode solution for the FDM and
DCM are nearly equivalent and result in the smallest error for frequencies
as large as 30 rad/s. Hence, it may be beneficial, in some cases, to use the
damped modes to obtain a more accurate solution.

The FDM produced similar results to the DCM for forcing frequencies below
the first natural frequency. A comparison of the modal methods for a
forcing frequency ®f¢ = 10 rad/s is shown in figure 6. Once again, the
higher-order modal methods result in more accurate solutions. The large
relative errors near T = 0 are due to the zero initial conditions which cause
the denominator of eq. (33) to approach zero at T = 0. As explained in
reference 12, the increase in accuracy with the order of the modal method
is due to the addition of terms which are functions of the generalized
stiffness and mass matrices and the force vector and its time derivatives.
These additional terms approximate the effect of the higher modes which
were neglected in the modal summation.
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Thermal Example: Rod Heated At One End

Results of references 10 and 11 indicate that Lanczos vectors can be
effective reduced basis vectors for solving linear and non-linear thermal
problems. Since the accuracy of the Lanczos vectors is comparable to that
of the MAM for structural dynamic problems, it was expected that higher-
order methods, such as the MAM, FDM and DCM, would be effective in
solving complex thermal problems. The problem selected to study is
similar to that presented in reference 10 with one exception; the present
problem assumes the temperature at the right end of the rod is
constrained to zero. The forcing function is a ramp up from zero to a peak
value at time t = 10 sec and a ramp down to zero at time t = 20 sec as
shown in figure 7. The error function used to evaluate convergence is a
spatial error norm similar to that used in reference 12, namely

a 1 a
6=V(T-T)T(T-TJ (34)
T'T

A total of twenty equally-spaced finite elements were used to model the
problem. The temperature distributions in the rod as a function of the
number of modes for the MDM, MAM, and FDM are shown in figures 8a to
8c for time t = 10 sec. Because the forcing function is linear, the FDM
(having an order of 2) is exactly equivalent to the DCM. The FDM
converges with 5 modes to the exact solution as compared to 8 modes for
the MAM and 18 modes for the MDM. A spatial error norm similar to that
shown in eq. (34) is used to compare each method for time, t = 10 sec (fig.
9). The effectiveness of using higher-order modal methods for reducing .
‘the size and computational effort of thermal problems is illustrated in
figure 9. The FDM or DCM require about 28-percent of the number of
modes as compared to the MDM and about 63-percent of the number of
modes as the MAM for an accurate thermal response.
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CONCLUDING REMARKS

The present study extends the development of higher-order modal
methods to include non-proportionally damped systems using both first-
order (damped modes) and second-order (natural modes) modal-
superposition methods. The study compares the accuracy and convergence
of the mode-displacement, mode-acceleration, force-derivative, and the
dynamic-correction methods (MDM, MAM, FDM, and DCM respectively) in
solving proportionally and non-proportionally damped structural dynamic
problems as well as transient thermal problems. The higher-order modal
methods, such as the FDM or DCM, are very effective in solving structural
dynamic problems. The damped mode solutions are found to be effective
in solving a non-proportionally damped two-degree-of-freedom problem.

Results of a two-degree-of-freedom spring-mass-damper system indicate
that, for the proportionally damped problem, a solution using two damped
- modes produces identical results as one using only one natural mode.
Hence, there is no advantage in using a damped modal solution to solve a
proportionally damped problem. However, for the non-proportionally
damped problem, the use of two damped modes produces more accurate
results than the single natural mode case. The DCM has the lowest
percentage error of all the mode-superposition methods over the
frequency range of 2 to 50 rad/s. The FDM, having an order of four (four
integrations-by-parts (N=4)), produced similar results to the DCM up to a
forcing frequency of about 35-40 rad/s. For the proportionally damped
problem, all the methods were inaccurate near a frequency of 50 rad/s
(close to the second natural frequency of the system).

A one-dimensional heat conduction problem (rod heated at one end) was
also investigated to evaluate the usefulness of using the FDM to solve
thermal problems. The higher-order modal methods such as the FDM were
very effective in solving the thermal problem. Until now, modal methods
were inefficient in solving thermal problems because the nature of the
problem required the inclusion of the higher modes for an accurate
solution. The ability of the FDM to approximate the effects of the higher,
but neglected, modes resulted in an accurate solution using only five
modes out of a total of twenty as compared to the MDM which required 18
modes for an accurate solution.
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