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Abstract

Integer-prograrraning formulations for the design of

symmetric and balanced laminated plates under biax-

ial compression are presented. Both maximization of

buckling load for given total thickness, and the mini-

mization of total thickness subject to a buckling con-

straint are formulated. The design variables that define

the stacking sequence of the laminate are zero-one in-

tegers. It is shown that the formulation results in a lin-
ear optimization problem that can be solved on readily
available software. This is in contrast to the continu-

ous case, where the design variables are the thicknesses

of layers with specified ply orientations, and the op-

timization problem is nonlinear. Constraints on the

stacking sequence such as a limit on the number of

contiguous plies of the same orientation and limits on

in-plane stiffnesses are easily accomodated. Examples

are presented for graphite-epoxy plates under uniaxial

and biaxial compression using a commercial software

package based on the branch-and-bound algorithm.

Introduction

The design of laminated plates for maximum buckling
load has drawn much attention in recent years (e.g.,

[1]-[7]). Typically the design variables are either the

ply orientations of the layers or the thicknesses of lay-

ers assumed to have a given ply orientation. However,

in many practical applications the ply orientations that

may be used are limited to 0-deg, 90-deg and :i:45-deg,

and the thicknesses of the layers are limited to inte-

ger multiples of the lamina thickness. This means that

the basic design problem is to determine the stacking

sequence of the composite laminate--a problem which

calls for integer programming techniques.

Integer programming techniques are often quite costly,
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and for this reason there have been several attempts

to use ad-hoc techniques in applications to structural

optimization (e.g., [8], [9]). However, the laminate de-

sign problem (when classical lamination theory is used)

is simple enough to permit the use of standard inte-

ger programming techniques. Thus Mesquita and Ka-

mat [10] and Olsen and Vanderplaats [11] have applied

the popular branch and bound technique to the op-
timization of composite laminates with thickness and

ply orientation design variables subject to frequency

or strength constraints. In Reference 10 the method

was applied directly to the nonlinear problem, while in
Reference 11 the nonlinear problem was solved as a se-

quence of linearized problems. A similar approach was

used by John and Ramakrishnan [12] for the design of

trusses using a discrete set of sections.

The objective of the present work is to show that the

stacking sequence design of a laminated plate for buck-

ling can be formulated as a linear problem by using

ply-orientation-identity design variables. Thus, widely
available software for the solution of linear integer pro-

gramming problems can be used. Both the maximiza-

tion of buckling load for specified total thickness and

the dual problem of minimizing total thickness for spec-

ified loading are studied.

Analysis and Optimization Formulation

A simply supported laminated plate under biaxial com-

pression is shown in Figure 1. The loads per unit length
in the x and y directions are AN_ and ANy, respectively,

with ,_ being an amplitude parameter. The laminate is

assumed to be symmetric and composed of 0-deg, 90-

deg and 4-45-deg plies. Each ply has a constant thick-
ness t. For most of the examples in this paper, the lam-

inate is also assumed to be balanced (i.e., the number

of 45-deg plies is equal to the number of -45-deg plies).

The laminate is composed of Np plies with a total thick-

ness of h = Npt. However, because in some situations
we will not know the number of plies (this will be de-



terminedby the optimization process) the .number of

plies is assumed to be smaller.than an upper limit N.
The laminate buckles when the load amplitude reaches

a critical value A_ given as

_.r(,,,, n)/" 2 =

D,1 (_)4 + 2(D,2 + 2D66)(m)2 (_)_+ D2, (_)4

(=_)2 N= + (-_)"Ny

(i)
where m and n ate the number ofhalf waves in the x

and y directions, respectively, selected so as to mini-

mize Act. In the present study the minimization over

m and n is performed by checking for all value of m

between .I and ......................................
n I. The flexural stifl'nesses Dn, DI2) Da2 and Ds6 can

be expressed in terms of three integrals, V0, VI, and

V3) and five material invariants Ui, i = I,... ,5, which

depend on the stacking sequence [13] as

Dn = UI Vo + U2 V1 + Ua V3

D22 = U_Vo- U2V_+ UaVa
(2)

Dis = U4Vo - UaVs

Da6 = UsVo - UsY3

where V0, V1 and V3 are given as

hl_ 1 N= (3)
Vo J-h/2 -3_=t

hi2 1vl =   co 2ea = cos2O (  -
(4)

and

hl_ 1 N2cos4e =  p cos4e (  - (s)
Va = a-_l_ "a*=1

where h is the total thickness of the laminate, z is the

distance from the plane of symmetry (see Figure 1), 0

is the ply orientation angle, and pk is a variable which

is equal to one if the kth ply is occupied and is equal to

zero if the ply is empty. Constraints are applied during

the optimization to ensure that p_ can be zero only for

the outermost plies. The material invariants are

1
U1 = _(3Qn + 3Q2_ + 2Q12 + 4Q6s)

1

U2 = _(Q!1 - Q_)
1

lla = _(Qlt + O'12 - 2Qt2 - 4Qcs) (6)

1

U, = _(Qn + QT_ + 6QI: - 4Q_)

l

u_ = _(Qn + Q_ - 2Q,_ + 4Q_s)

,. _ ,,

where

. - E_ Ea
" , Q22 = ,

Q_ 1- v_v_ 1 - v_2v_

Qt2 = 1 -.v_v2_ ' 1 -- Y121221 '

and Q6_ = GI_-

It is convenient to work in terms of nondimensional

loads n_, n_, flexural stiffnesses dij, integrals v0, vi
and va, and material constants ui defined as

g'_"_ g_a: 5 D_
ne = 1.5r_E_-------_, n_ = 1.5 r_---_t3, dij = 1. Elt s '

i,j = 1,2,6

vi = 1.5 _-, i= 0,1,3

Then A_r is given as

ui=_ i= 1,2,4,5

(8)

Aor(m, n) =

d_ m 4 + 2(dt_ + 2d¢¢)m_n2(a/b) _ + d_n 4 (a/b) 4

m_.. + ,_2(,_/_)_._ (9)

The nondimensional flexural stiffnesses are given as

dll = UlVO "I- U2Yl • It3v3

d22 -" ulvo - U2Vl q- u3v3

d12 = u4u 0 - u3_) 3

d66 - usvo -- 723v3

(lO)

Because the laminate is symmetric only the plies be-

low the plane of symmetry need to be defined. The

ply stacking sequence is defined in terms of four sets

of ply-orientation-identity variables oi, ni, ff and fi"',

i = 1,..., N/2 that are zero-one integer variables. The

variable oi, ni, ff or fi n is equal to one if there is a

0-deg, 90-deg, 45-deg or -45-deg ply, respectively, in

the ith layer. Unlike conventional practice, it is more
convenient here to number the plies so that the first

one (i = 1) is nearest the plane of symmetry of the
laminate, and the last one is on the outside (i = N/2).

The stacking-sequence variables are used to express the

nondimensional integrals v0, v_ and va as

N/2

k--1

N/2

= - - 1) 1(o,+ + y; + y?)
k=l

(lla)



NI_

.-   ,cos o,t( l - j"-'
k=l

N/2

= Elk s - (k - 1)a](ok - nk)
k=l

N/2

=Ep,  os4O, - 1

(llb)

,=1 (11c)
N/2

= _--_[k 3 - (k - 1)S](ok + nk - f_ - f_)
k=l

where f_ and f_n do not appear in the expression for
vl since the cosine of 90 degrees is equal to zero. Two

optimization problems are formulated. The first is the

optimization of a laminate with a fixed thickness for

maximum buckling load, and the second is tile opti-

mization of a laminate with a given buckling load for

minimum thickness. For the first optimization problem

the lowest (over values of rn and n) buckling load )_* is
maximized. The objective ,X* is not a smooth function

of the design variables, and the standard device for re-

moving this problem is to add _* as a design variable

and require it to be less than or equal to each _cr(m, n).

Thus, the optimization problem is formulated as

find ,V, and oi, ni, ff f_n

i = l,...,N/2

to maximize ,_°

such that A" < Act(re, n),

m=l,...,m! n=l,...,n I (12)

oi-l-ni-t- fiP + fm = l

i= 1,..',N/2

NI2

and _ff- fi" =0
i=1

where the last constraint ensures that the number of

45-deg and -45-deg plies is the same, so that the lami-

nate is balanced. Equations (9)-(11) are used to calcu-

late the nondimensional buckling load which is clearly

a linear function of tile stacking-sequence design vari-

able. Therefore, the optimization problem (12) is a

linear integer programming problem.

Tiffs linear formulation should be contrasted to the one

obtained when ply thicknesses are used as design vari-

ables. That formulation results in a nonlinear optimiza-

tion problem. Thus the continuous formulation results

in a problem which is more difficult than the integer

formulation presented here.

specified buckling load, the number of plies is not spec-
ified. Ilowever, the dual formulation is only slightly

more complex. The number of plies, N, is selected

large enough to insure that a laminate that does not
buckle can be found. This can be done by analyzing

a trial design and then scaling the laminate thickness
so it does not buckle (the buckling load is proportional

to the cube of the laminate thickness if the same ply

stacking-sequence is repeated again and again). Now

the laminate is designed permitting some of the outer

layers to be empty. Buckling will not occur for a spec-

ified Nx and N_ if )_c_ is greater than or equal to one.

The problem is formulated as

find

to minimize

such that

and

i= 1,...,N/2

N/2

+ + + ::'1
i=1

/_cr(D'lj 7t) _ 1,

m= 1,...,m! n= 1,...,n!

oi + ni + f_ + f_ < 1

i= 1,...,N/2

N/2

- p, ) = o
i=1

o_+ n_ + ff + Y7'

< oi-1 + n_-i + f/'-I + f_z

i = 2,...,N/2

(13)

where tim last constraint ensures that if there are empty

plies they are on the outside.

In general, the solution to the optimization problem

(13) is not unique. For example, the non-integer solu-
tion could require 8.1 plies. The design from (13) will

have 10 plies (N must be even because of symmetry),

and it will have a substantial margin, that is Ac_ will be

significantly larger than 1. Any weaker 10-ply design,
that is one that has a ,_¢_ closer to 1, is also a legitimate

solution of (13) in that it satisfies all the constraints
and has the same value of the objective function. In

the present work, to achieve a unique solution, it is as-

sumed that the best design is the minimum thickness

plate that has also the largest possible buckling mar-

gin of all plates of the same thickness. To achieve this

goal the objective function of (13) was modified by sub-

stracting t,Xc, from it, where e is a small number (0.001
for the results presented in the next section).

Unlike the formulation of Eq. (12), in the dual prob- Another reason for a nonunique solution is that in terms

iem of minimizing the laminate thickness subject to a of the calculation of the flexural stiffnesses of Eq. (2)



thereisnodifferencebetweenthecontributionof45-deg
and-45-degplies.Itowever,thebuckling-loadcalcula-
tion,Eq.(1),isnotaccurateforlargevaluesofDl6 and
D_6. These can be minimized by selecting the positions

of the 45-deg and -45-deg plies so as to minimize their

combined contribution to V0, Eq. (3). This selection

was done by modifying manually the optimum design.

In some cases it may be desirable to impose constraints

on the stiffness of the plate. In the present study a

limit on the in-plane stiffness in the x direction All

was considered as an example of such constraints. A

constraint requiring All to have a minimum value of

A°l can be written as

All/A°l - 1 > 0 (14)

As shown in the Appendix, this constraint can be ex-

pressed as a linear function of the ply identity design

variables in a manner similar to the buckling constraint

(in Eqs. (9)-(11)).

Results

Results were obtained for graphite-epoxy laminates

(El = 18.5 × 106psi, E2 = 1.89 × 10Spsi, GI: =

0.93 x 106psi, v12 = 0.3, t = 0.005 in.). The compu-

tations were performed with the LINDO program [14]

which employs the branch-and-bound algorithm. First

uniaxial loading was applied, and the buckling load was
maximized for various plate aspect ratios (a/b) for lam-

inates with 16 plies. It is known (e.g. [15]) that for low

aspect ratios the optimum ply angle is 0-deg, while for

a/b larger than about 0.7 the optimum ply orientation
is close to =t=45-deg. This can also be expected from Eq.

(9) since for a/b larger than 0.7, ds6 is the most impor-
tant stiffness coefficient. A check was performed to see

whether there was a transition region where the opti-

mum stacking sequence would include both 0-deg and

+45-deg plies. It was found that if such a transition re-

gion exists it is extremely narrow, in that even changes
in thc fourth significant digit of the aspect ratio were

not fine enough to locate it. When the number of plies

(N) was not divisible by four, so that a balanced 5=45-

deg laminate was not possible, the optimizer placed two

0-dog plies near the plane of symmetry of the laminate,
as expected (because these less efficient plies have the

smallest effect on d66 there).

Next the biaxial loading case was solved, and the re-

suits are presented in Figure 2. It is known (e.g., [15])

that for aspect ratios less than 1.5 the optimum ply
orientation is the same as for the uniaxial case, and for

aspect ratios greater than 1.5, the value of the opti-

mum ply angle increases rapidly as N_/Nx increases,

and that for large N_/N_, the optimum ply angle is

90 degrees. Therefore, the case of biaxial loading for a

laminated plate with an aspect ratio of 2 was selected.
The reference axial load N_ was fixed at 1 lb/in. (so

that Act is equal to the critical value of N,:), and the
reference transverse load was increased from 0.1 to 3.0

lb/in. The plate was specified to have 16 plies. For

this choice, the value of Act is equal to the value of N_

at buckling. Two transition regions were found: one

for N_/N_ between 0.125 and 0.15 and the other for

Nu/N= between 2.4 and 2.45. The first region marked
the transition from all +45-deg plies to a combination

of 90-deg and 4-45-deg plies. The second region marked
the transition from a combination of 90-deg and -l-45-

deg plies to all 90-deg plies. As the ratio Nu/Nx in-

creased to 0.15 first two 90-deg plies were added, then

four 90-deg plies (Nu/N_=0.25), then six 90-deg plies

(N_/N_--1), and finally all 90-deg plies (N_/N_=2.45).
As the transverse load N_ became larger than the axia!

load Nr, the :k45-deg plies moved closer to the plane

of symmetry until only 90-deg plies were present. This

behavior is expected because when Ny dominates, the

plate behaves like a plate of aspect ratio of 0.5 under

uniaxial load, and for that case the optimum angle is

in the direction of the loading.

When the number of contiguous plies in the same direc-

tion is large, composite laminates are known to experi-

ence matrix cracking. Therefore, it is desirable to limit

the number of such contiguous plies. To demonstrate
that such constraints can be easily added to the present

formulation we imposed this constraint on the design

obtained for Nv/Nr = 2 which had 5 contiguous 90-deg

plies. This was implemented by adding the constraint

n4 + n5 + no -'t- nr + ns < 4 (14)

The designs with and without this constraint are com-

pared in Figure 3. It is seen that the penalty for limiting

the number of contiguous plies is quite small.

The ease of Nu/N_ = 2 was used also for the pur-

pose of checking on other aspects of the optimization.
The first was the effect of the balanced laminate re-

quirement. When this requirement was removed, the

optimization selected a design with three 45-deg and

five 90-deg plies. However, the buckling load changed

by less than one hundredth of one percent. A second

aspect was the effect of requiring that the design vari-

ables be integers. Noninteger design variables describe

hybrid plies. For example, ox = 0.5, nt = 0.5 means

that the first ply has properties which are the aver-

age of the elastic properties of zero and ninety degree
material. When the requirement that the ply-identity

variables be integers was removed the solution included



twohybridplies.Fori = 1 the'ply was 70 percent 45-

deg and 30 percent 90-deg, and for i = 4 the ply was

70 percent -45-deg and 30 percent 90-deg, with the re-

maining plies being 90-deg. The effect on the buckling
load was again quite small--less than five hundredths

of one percent.

Another aspect of the optimization checked for this case

was the effect of introducing a minimum stiffness re-

quirement. The optimum laminate for this case, being
dominated by 90-deg plies, has only 16 percent of the

axial stiffness All of an all 0-deg laminate. A require-

ment that All is at least 50 percent of the unidirectional

laminate was added, with and without the requirement

of no more than four contiguous plies. The results are

compared to the original design in Figure 4. It is seen

that the stiffness requirement is satifsfied by putting 0-

deg plies near the plane of symmetry where they have

only a minimal effect on the bending stiffnesses, and

hence on the buckling load. The reduction in the buck-

ling load is about 8 percent. This time effect of adding

the requirements of no more than 4 contiguous plies had

a nontrivial effect (7 percent reduction) on the buckling
load.

Next we solved the minimum thickness problem for a
laminate with the same dimension. The axial load, Nz,

was fixed at 30 lb/in., and the transverse load N_ was

varied from zero to 75 lb/in. The results are summa-

rized in Figure 5. For Ny = 0 we have a 10-ply laminate

which is dominated by -l-45-deg plies, with two 0-deg

plies near the plane of symmetry. As N v is increased,
the number of plies increases, and the laminate becomes

dominated by 90-deg plies. However, the requirement

of a balanced laminate tends to disturb the progression

toward increasing number of 90-deg plies. For example,

with loads that result in 12-ply laminates we can have

either 4 or 8 :l:45-deg plies, and the optimizer chooses 4,

because 8 would leave only four 90-deg plies. However,

when we increase tile load so that we require 14-ply

laminates, the number of :t:45-deg plies jumps from 4

to 8, because we can have now six 90-deg plies.

Concluding Remarks

The problem of stacking sequence design of composite

laminates for minimum thickness subject to a buck-

ling constraint or maximum buckling load for a given
thickness was addressed. It was shown that the use of

ply-orientation-identity design variables results in a lin-

ear formulation of the problem unlike the use of more

traditional ply-thickness design variables which lead to

nonlinear formulation. The linear integer-programming

formulation was solved using a commercially available

program based on the branch-and-bound algorithm. It
was also shown that the formulation can accomodate

constraints on stiffnessess as well as constraints on the

maximum number of contiguous plies of same angle.

Results were presented for both uniaxial and biaxial

ioadings.
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Appendlx--In-Plane Stiffness Constraint

This appendix shows how a limit on the in-plane stiff-
ness All can be formulated as a linear function of

the ply-orientation-identity design variables. Limits on
other stiffness components can be formulated in a sim-

ilar way.

The in-plane stiffness All is given as

All "- U1VoA -F U2VIA Jr U3VaA (A1)

where
h/2 N

: [ =2 :pk (A2)
VOA J-h/_ k=l

h/2 N

VIA J -hi2 k=l

and

h/2 N/.

V3A -- / C0S40 -- 2 Z pk cos48k

J-h/2 k=l

(A4)

We define nondimensional stiffness and integrals as

all=A11/Elt, _ia_--Via/t i= 0,1,3 (A5)

where all can be expressed as

all = UI'OOA "l- U2VlA + U3"03 A (A6)

and the nondimensional integrals can be expressed in

terms of the ply-identity design variables as

NI_

VOA ----2E(Ok q" nk "t" f: "+ f'_)
k=l

N/2

VIA =2_(ok -- nk)
k=l

NI_

VaA = 2 Z(o_ -t- na - f_ - f'_)
k=l

(A7)

In the example used in the Results section the lower

limit on All is a specified fraction f of the correspond-

ing stiffness of an n-ply all 0* laminate. For such a

laminate VOA = VIA = VaA = N, so that the constraint

of Eq. (14) becomes

all

N(ul + us + us) - f >-0 (A8)
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