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ABSTRACT

The present paper reviews recent developments in two major areas of

structural sensltivJty analysis: sensitivity of static and transient

response; and sensitivity of vibration and buckling eigenproblems. Recent

developments from the standpoint of computational cost, accuracy, and ease

of implementation are presented.

In th_ area of static response, current interest is focused on

sensitivity to shape variation and sensitivity of nonlinear response. Two

general approaches are used for computing sensitivities: differentiation of

the continuum equatiops followed by discretlzation, and the reverse approach

of discretization followed by differentiation. It is shown that the choice

of methods h_s importent accuracy and implementation implications.

In the area of eigenproblem sensitivity, there is a great deal of

interest an_ significant progress in sensitivity of problems with repeated

elgenvalues. The paper raises the issue of differentiability and continuity

that is inherent to the repeated eigenvalue case.

Presented at the Third International Conference on CAD/CAM, Robotics and

Factories of the Future, Southfield, Michigan, August 14-17, 1988.



INTRODUCTION

The past few years saw vigorous activity in sensitivity analysis

concerned with the calculation of derivatives of engineering systems

response with respect to problem parameters. Someof the engineering fields

include control systems (e.g. Herrera-Vaillard et al., 1986, Freudenberg et

al., 1982), flow of chemically reaching systems (e.g. Raiszadek and Dwyer,

1985, Reuven et al., 1986), supersonic flow {e.g. Wacholder and Dayan, 1984)

and heat conduction in solids (e.g. Santos, 1988). There is also interest

in interdisciplinary sensitivity calculations (Sobiesczanski-Sobieski, 1988

and Sobiesczanski-Sobieskl, et al. 1988) and in automating the process of

differentiating complex algebraic expressions (Wexler, 1987). For

structural applications, sensitivity derivatives are not only important for

design optimization, but also for system identification (e.g. Ibrahim, 1987)

and statistical structural analysis (e.g. Nakagiri, 1987, Liu et al., 1988).

There has been great interest in developing methods for structural

sensitivity analysis. Recent surveys by Adelman and Haftka (1986) and

Haftka and Grandhl (1986) provide reviews of the field up to 1985. However,

the strong activity in the structural sensitivity analysis since then has

resulted in significant developments. The purpose of the present paper is

to review some of this recent progress.

One important recent development is an emphasis on implementing

sensitivity calculations in general-purpose structural analysis programs

(e.g. Choiet al., 1988, Prasad and Emerson, 1982, Giles and Rogers, 1982,

Camarda and Adelman, 1984, Herendeen et al., 1986, Nagendra and Fleury,

1987). These programs tend to be large and cumbersome, so that ease-of-

implementation becomes a major issue in considering competing sensitivity

algorithms. The implementation effort must be weighed against the



performance of the algorithms as reflected in their accuracy and

computational efficiency. The present paper considers trade-offs between

ease-of-implementation and performance.

The paper is divided into two major sections. The first deals with

both the static and transient response and the second deals with eigenvalue

problems. This division is motivated by the fact that eigenvalue-

sensitivity problems arising in vibration and damping problems require a

different class of solution methods from those used in static and dynamic

response sensitivity analysis.

SENSITIVITYOFSTATICANDTRANSIENTRESPONSE

Finite-Difference Implementation

The easiest method to implement for calculating response derivatives is

the finite difference approach. Consider, for example, a displacement field

U(x) which depends on a structural parameter x. The derivative U' at x

x can be approximated by first-order forward differences aso

U !

U(x° + ax) - U(xo)

AX - _ U"(Xo ÷ _Ax)2

O&_1

(i)

The first term in Eq. (I) is the forward-dlfference approximation, and

the second term is the truncation error. To minimize the truncation error

it is desirable to reduce the step-size _×. However, a small step size

amplifies the algorithmic and round-off errors in U(x o) and U(x ° + Ax) - the

so-called condition errors. This is the step-size dilemma whereby a large

step size generates large truncation errors and a small step size large

condition errors. It is possible to find an optimum step-size (see, Gill et

al., 1983 and Iott et al., 1985). However, in some cases no step size gives
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acceptable errors. In that case, it is recommended that the central-

difference approximation be used

U(x * Ax) - U(x - ax)
U' = o o (nx) 2

2Ax 6 U'''(Xo + _Ax) (2)

The second term in Eq. (2) is the truncation error associated with the

central-difference approximation. The central difference approximation

typically allows a larger Ax for the same value of the truncation error, and

so alleviates problems associated with large condition errors.

The problem of large condition errors can be particularly severe when

U is obtained via an iteratlve process. Consider, for example, a case

where U is obtained from the iterative solution of a system of algebraic

equations

F(U,x) = 0 (3)

representing for example the equations of static structural equilibrium.

Assume that Uo is the solution for the displacement obtained for x = xO when

the iterative process is deemed to have converged. It is tempting to start

= +Ax from U , but thls can lead to large conditionthe solution for x x° o

errors in the derivatives. The reason is that the iteration simultaneously

accounts for the change in x and also for the residual error in Uo"

Haftka (1985) suggested a solution for this difficulty. For x+Ax, instead

of re-solving Eq. (3), we solve

+ _x) - F(U xo) = 0F(U'Xo o' (4)

for an approximation to U(x ° + Ax).

The flnite-difference calculation of derivatives is easy to implement

and is, therefore, quite popular. There is, however, a general impression

that the approach is very computationally expensive as compared to

analytical and semi-analytlcal approaches. This is true for static problems



where most of the computational cost is associated with displacement field

solution. However, in static problems where stress recovery is a major

computational ingredient, and in transient response, the forward-difference

method is competitive (e.g. Haftka and Malkus, 1981), and is the method of

choice provided the accuracy is acceptable.

Discrete Analytical and Semi-Analytical Sensitivity

Most widely-used structural analysis programs discretize the equations

of equilibrium using assumeddisplacement fields.

these equations are written as

KU= F

where K is the stiffness matrix and F

differentiate Eq. (15) to obtain

KU' _ -K'U ÷ F'

In the static linear case

the load vector.

(5)

We can

(6)

The solution of Eq. (6) for U' is the discrete version of the direct method.

For calculating the derivative of a function of U, g(U) it may be more

efficient to use the adjoint method

g, = -^T(K'U - F') (7)

where the adjoint vector A is the solution of

_dg]T (8)

Belegundu (1985) showed that A can be interpreted as the Lagrange

multiplier for the constraint of Eq. (5) when g' is calculated, so that

dg (9)

dF

There have been several enhancements and generalizations of the

discrete approach in recent years. Atrek {1985) suggested a simplification

for truss structures. Mota Soares and Pereira Leal (1987) generalized it to

mixed elements using the Hellinger-Reissner variational functional. Nguyen
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(1987a,b) formulate_ the sensitivity calculations when multilevel

substructuring is e_ployed. Ryu et al. (1985) present a generalization of

the direct and adjoirt methods to nonlinear analysis using the tangent

stiffness matrix.

One major concern receiving muchattention is the calculatlon of the

right-hand-slde of Eq. (6) the so-called "pseudo load". If this load is

applied to the structure then the resulting displacement field is equal to

U'. The calculation of this vector is cumbersome even for somesizing

variables (_.g. Yuanand Wu, 1988). It is particularly difficult for shape

design variables, because analytical derivatives for K' are not easy to

obtain. Wan_et al. (1985), Braibant and Floury (1984) and Bralbant (1986)

obtained derivatives of the stiffness matrix for general shape variables.

However, for Implementation in general-purpose structural analysis packages

a simple and easy-to-implement approach was required - the seml-analytlcal

method.

The seml-analytiral method is based on finite-difference evaluations of

K' and F' i_ the calc_tlation of the pseudo load. Because it combines ease

of implementation wltb computational efficiency it has become a very popular

method and is implemented in NASTRAN (Nagendra and Fleury, 1987) EAL (via

runstreams, Camarda and Adelman, 1987) and other finite element programs.

While the method has been used for many years, the name "semi-analytical"

was coined only recently. It is also called the quasl-analytlcal method

(Cheng and Yingwei, '987). The derivative K' can be calculated at the

system lev_l, or the pseudo load can be calculated at the element level

(e.g. Rajan and Budim_n, 1987, Belegundu and Rajah, 1988).

The semi-analytlcal method works very well for sizlng-type variables

such as cross-sectionel areas of bars or plate thicknesses. However, for



shape design variables, the truncation error associated with the finite-

difference approximation of K' can be substantial. Mild problems were

reported by Cheng and Yingwel (1987) for truss and 3-D solid examples, by

Yang and Botkln (1986) for plane stress problems, and very large errors were

encountered for beam problems by Barthelemy et al. (1986) and Pedersen et

al. (1987). The source of the problem was traced by Barthelemy and Haftka

(1988) to the basic concept of the pseudo load. As noted before, it is the

load that must be applied to the structure to produce the sensltivity field.

In many cases of shape variation the sensitivity field is not a reasonable

displacement field for the structure and its boundary conditions. For

example, for beam- or plate-like structures the sensitivity U' to a length

dimension is dominated by shear rather than bending. To produce these

unlikely shear-dominated fields the pseudo load has to include large self-

cancelling components. Small truncation errors in these components then get

amplified into large errors in U'. Barthelemy and Haftka (1988) provide an

error index that can be used to detect cases with large errors and correct

the errors in some instances. It should be noted, however, that even for

shape variables there are many cases where the semi-analytical method

provides excellent accuracy (e.g. Liefooghe et al., 1988).

The semi-analytical method was also applied to transient problems and

found to work well for slzing-type design variables (Greene and Haftka,

1988). Similarly, the method was successfully applied to aerodynamic

sensitivity calculations (Murthy and Kaza, 1988).

The use of critical point constraints for design subject to constraints

on transient response attracts interest because of its efficiency for

sensitivity calculations (e.g. Haftka and Kamat, 1985, Grandhi et al., 1986,

Arora and Hsieh, 1986, Tseng and Arora, 1988, Greene and Haftka, 1988).



Other aspects of transient sensitivity calculation investigated recently

include the effect of general boundary conditions (Hsieh and Arora, 1985),

and the calculation of derivatives of transition times (Chang and Chou,

1988).

Variational and Contlnuum-Based Sensitivity

Most general-purpose structural analysis programs are not easily

amenable to implementation of discrete sensitivity calculations. The

calculation of the pseudo load typically requires intimate knowledge of and

access to the source code of these programs. But these source codes are

typically inaccessible and very complex. Therefore there is great interest

in sensitivity calculations based on pre- or post-processing operations

which require only minimal knowledge of the structural analysis code. This

is typically afforded by sensitivity formulations which operate on the

equations of structural response before they are dlscretized. Often this is

accomplished via a virtual-work formulation of the equations of equilibrium.

This approach is particularly simple for calculating sensitivities with

respect to sizing or stiffness variables. We write the strain-displacement,

stress-strain and equilibrium equations as

E = L_(u)

i
= D(_ - E ) (10)

0-6_ = f.6u

where u, ¢ and _ denote the displacement, strain and stress field,

respectively, L, is a linear differential operator, D is the material

i
stiffness matrix, e the initial strain field, f is the applied load

field, and a dot between two quantities denotes a scalar product integrated

over the structure. If e and a are interpreted as generalized strain
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and stress fiel4s Eq. (10) applies to one and two dimensional elements such

as beams and shells as well as to three dimensional solids. Wecan now

differentiate Eq. (10) with respect to a stiffness parameter to get

E' = L_(U')

_I i (11)
o' = D[e' * D D'(e - e )]

O'.6e = 0

where a prime denotes a derivative with respect to the stiffness parameters.

Comparison of Eqs. _I0) and (11) indicates that the sensitivity field

u',e',o' ca_ be obtaired by loading the structure by an initial strain field

equal to -D D'(e _ e ). This applies regardless of the structural analysis

program used for the ;nalysls. Barthelemy et al. (1988) demonstrated this

approach for truss, plane stress and plate problems, using the EAL finite-

element program and the FASOR shell-of-revolution code. Equation (11)

represents the dire_t approach to the derivative calculation. Application

of the adjoint approach typically leads to integrals that can be calculated

by adding adjolnt ]cads and post-processlng the output of the structural

analysis program. Tb!s has been demonstrated by Barthelemy et al. (1988),

Chenais (1987, 1988), Choi and Seong (1986a and 1986b), Chon (1987), Dopker

and Chol (1987), Haftka and Mroz (1986), Santos and Choi (1987) and by Choi

et al. (1988) using s_veral finite element programs including EAL and ANSYS.

Similar implomentat_on of the direct and adjoint method for thermal

sensitivity calculations in ANSYS was presented by Santos (1988).

There also have teen several derivations of continuum-based sensitivity

analysis whlch did Pot address implementation issues, including Dems and

Mroz (1985), Mroz (19P7) and Sokolowskl and Zolesio (1987). These continuum

derivations have also been extended beyond linear elasticity to
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thermoelasticity problems (Dems, 1987b, Demsand Mr_z, 1987, Meric, 1986,

1987b) and thermal problems (Dems, 1986, 1987a, Hou and Sheen, 1988).

The focus of attention in variational and continuum-based sensitivity

is presently shifting to nonlinear and transient problems. Most papers

address geometrical nonlinearity including Arora and Wu (1987), Barthelemy

et al. (1988), Chol and Santos (1987), Haber (1987), while others including

Mr6z et al. (1985), Cardoso and Arora (1987), Wuand Arora (1987), Tsay and

Arora (1988) and Szefer et al. (1988) include material nonlinearity, albeit

for elastic behavior. Another type of nonlinearity is that introduced by

unilateral constraints. Sensitivity analysis for plates with unilateral

constraints was performed by Bendsoeet al. (1985), Sokolowskl and Zolesio

(1987) and Bendsoe and Sokolowski (1987). Sensitivity calculations in

transient response has been addressed by [_emsand Mr6z (1987), Meric (1987c,

1988) and Wuuet al. (1986).

ShapeSensitivity Accuracy Problems

Sensitivity derivatives with respect to shape appear to be much more

prone to accuracy problems than calculations of sensitivity with respect to

sizing variables. Whenthe discrete approach is employed, these accuracy

problems manifest themselves in the semi-analytical method as noted in the

section of the discrete approach. In continuum based derivations the

adjoint method typically leads to surface integrals (e.g. Chol and Haug,

1983, Demsand Mroz, 1984). These integrals have been found to be poorly

evaluated by finite element programs because such programs rarely provide

accurate boundary values for stresses and strains. The difficulty can be

particularly acute in problems of variations in interface boundaries because



ii

of the very high stress gradients often encountered near such boundaries

(see Demsand Haftka, 1988).

It is possible to movesurface integrals away from interface boundaries

by utillzing conservation rules (see Demsand Mroz, 1986), but this is a

problem-dependent remedy which may not be easy to implement in general-

purpose codes. Instead, the standard approach is to transform the surface

integrals to domain integrals which are more adequately handled by finite

element programs (see for example, Choi, 1987, Choi and Seong, 1986, Hou et

al., 1986, Yangand Botkin, 1987). The domain integral approach requires

the definition of a shape "velocity" field in the entire domainwhich is not

unique. Approaches which limit the shape change to regions near the

boundary are computationally more efficient, however, such a choice may

compromiseaccuracy. Seongand Choi, 1987, studied the tradeoff inherent in

the selection of the depth of the region affected by boundary changes. The

problem is encountered also for discrete sensitivity calculation, and Botkin

(1988) reports using only one-element-deep sensitivity calculations.

While domain integrals have proved to be more accurate than surface

integrals for adjoint shape sensitivity, it is not clear that they

completely eliminate accuracy problems. It has been shown (e.g. Yang and

Botkin, 1987) that these methods are equivalent to the discrete approach.

It can be expected, therefore, that problems which have large errors with

the semi-analytical method may also be sensitive to the details of the

numerical implementation of the domain integrals.

Boundary element methods provide high accuracy of response on the

boundary and are, therefore, ideally suited for the surface adjoint method.

Consequently, there is growing interest in the use of boundary element

methods for calculating shape sensitivity (e.g. Mota Soares et al., 1987,
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Merle, 1987a, Hou and Sheen, 1988, Kwak and Chol, 1988, Kane and Salgal,

1988, Barone and Yang, 1988).

SENSITIVITYANALYSISFOR EIGENVALUEPROBLEMS

Real Symmetric Eigenvalue Problems - Distinct Eigenvalues

The discretized elgenvalue problem associated with linear vibration or

buckling is

K¢ - AM¢= 0 (12)

where K is the stiffness matrix, and ¢ is the vibration or buckling

mode shape. For vibration problems M is the mass matrix and _ the

square of the frequency. For buckling problems M is the geometric

stiffness matrix and 1 the buckling load. The elgenvector ¢ is

typically normalized as

@TM¢= I (13)

Whenthe eigenvalues are distinct each derivative is given by

A' = cT(K' - AM')¢ (14)

where the derivatives of K and M are often calculated by finite

differences (a semi-analytical implementation, e.g. Sutter et al., 1986).

To obtain the derivative of the eigenvector we can use the direct method and

differentiate Eq. (12) to obtain

(K- AM)_' = -(K' - AM')_b + A'M¢ (15)

Equation (15) is singular, and cannot be solved directly. Nelson (1976)

developed a solution procedure which begins with a temporary replacement of

the normalization condition, Eq. (13), by a condition that the largest

component of ¢ is unity,

Cm = I (16)
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Removing the mth row and column from Eq. (15) results in a nonsingular

equation which is solved for a particular solution ¢'. The complementary

solution to Eq. (15) is _ therefore the general solution to Eq. (15)

subject to the condition of Eq. (16) is

¢' = ¢' ÷ c¢

The undetermined coefficient

into the derivative or Eq. (13).

(17)

c can be obtained by substituting Eq. (17)

The derivative of the eigenvectors can also be obtained by the modal

(adjoint) approach (e.g. Fox and Kapoor, 1968) whereby we expand ¢' in terms

of the eigenvectors. Thus

i (18)

For large proglems" the modal approach is of practical value only if a good

approximation to ¢' can be obtained with a relatively small number of terms

in Eq. (18). Recently, Wang (1985) proposed a modification of the modal

method to accelerate the convergence by adding a so-called psuedo-static

term to the expansion of Eq. (18) to obtain a modified modal method

_l i (19)
¢' = K [-(K' - _M')¢ + A'M¢] + [ die

i

This approach is analogous to the mode acceleration method in structural

dynamics. Sutter et al. (1986) reported substantial improvements in

convergence of this modified modal method over the regular modal method.

For example, the derivative of the first mode shape of a finite element

model of a cantilever beam with respect to the root thickness was obtained

using 21 modes with the modal method and only two modes with the modified

modal method.

It is also possible to use an iterative approach to calculate the

derivative of elgenvectors. The basic iterative process was suggested by

Rudisill and Chu (1975) for the system



A¢- _,¢ = 0

as

(k)
=

(k+l)'

14

cTA,¢ + ¢T(A - AI)¢ (k)'

= [(A' - A(k)I)¢ - A¢(k)'J/X

(20)

(21)

(k) (k)'
Where _ , @ are the kth iterate for _ and ¢'. The iteration

converges, albeit slowly for the largest etgenvalue of A (Andrew, 1978),

and can be applied to the vibration or buckling problem in Eq. (12) by using

_l

A = K M. Recently Tan (1986, 1987) proposed ways of accelerating the

convergence and applying the process to other than the largest eigenvalue.

For the buckltrg problem the calculation of M' is a oomputational

issue, because the geometric stiffness matrix, M, depends on the prebuckling

stresses. An adJoint method which avoids the need to calculate the

sensitivity of the pr_buckling stress field was proposed by Nogis (1986).

The adjotnt field A satisfies the equation

KA = -[_(¢TM¢)] T
_U (22)

P

where U denotes th_ prebuckling displacements and ¢ the buckling mode.
P

Using A we get

A' = cTK'¢ + AATK,Up + A¢TM,¢ (23)

Equation (23_ is valid only for the case of a load vector independent of x.

There has also been substantial work on the sensitivity analysis of the

eigenproblem using a continuum or variational approach (see Haug, Choi and

Komkov, 19Rh for an excellent discussion). For the buckling problem, the

adjolnt field can be _hown to be identical to the second-order postbuokling

field introduced by Kotter (Haftka et al., 1988). Implementation of

buokllng sensltivity Jn general purpose structural analysis programs are

reported by Haftka, Cohen and Mr6z (1988) and Cohen and Haftka (1988).

Pierre (1987) developed a procedure for accounting for the effect of



15

changing natural boundary conditions in a general problem and demonstrated

it by rod and beamexamples.

For the case of vibration (and buckling) eigenvalue problems of one-

dimensional structures, a recent paper has developed an expression for the

derivative of the nodal location of the mode shape, see Pritchard et al.

(1988). Denoting the modeshape as ¢(x,v) where x is the coordinate and

v a design variable, the equation for the nodal location xn is
_x

= _ 3¢I__.___v] (24)
3v 3¢I_x x=x n

Finally, in buckling problems it is possible to calculate the buckling

load without using eigenvalues (e.g. Haftka, 1983). This can be of

particular interest for calculating the sensitivity of limit-load type

buckling (Kamat, 1987).

General Eigenvalue Problems

The damped vibrations of structures, including the effects of

aerodynamic forces and active control systems, result in non-hermltian

eigenvalue problem with complex eigenvalues and eigenvectors. The vibration

problem is complex for rotating structures. Typically an eigenvector ¢ of

the damped system is written as a linear combination of the undamped modes

= [qi¢i (25)

where only a small number of modes are often required for a good

approximation. In the case of point actuators it may be desirable to

augment the vibration modes by "actuator modes", see Sandridge and Haftka

(1987).

The reduced order eigenvalue problem obtained by using Eq. (25) may be

written as
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(A-AI)Q = 0

where A is, in generai, eompiex.

problem Is more important than in the reai symmetric ease.

the form of

QTQ= I

is not acceptable as can be seen from the case Q = (I,i).

normalization conditions and their effects on elgenvector derivatives is

given by Murthy and Haftka (1988) and Lim et al. (1987).

Efficiency and implementation considerations are different In the

general case because typically the eigenvalue problem, Eq. (26), is small

and dense while the elgenvalue problem of Eq. (12) is large and sparse. It

is reasonable for the solution of a small general elgenproblem to calculate

all the eigenvectors and use the adjolnt (modal) approach as in Chen and Pan

(1986). An efficiency study of the direct versus the adjolnt approach is

given by Murthy and Haftka (1988). An approach similar to Nelson's method

based on the generalized Benrose inverse (but which does not preserve

bandedness) was suggested by Chen and Wei (1985). Rajan et al. (1986)

provide a discussion of derivative calculations on the case of rotor bearing

systems.

For the general case it is often desirable to calculate singular values

rather than elgenvalues. A singular value o of a matrix A satisfies

AU = aV A V = oU (28)

Where an asterisk denotes the hermltian transpose and the singular

vectors U and V are normalized as

UU- I VV- I

Freudenberg et al. (1982) show that

a' - Re[V*A'U]

(26)

The normalization condltion for this

A condition of

(27)

A discussion of

(30)

(29)
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Singular value sensitivities have been used by Mukhopadhyay and Newsom

(1984) and Herrera-Vaillard et al. (1986) for studying the sensitivity and

robustness of control systems.

Repeated Eigenvalues

For the real symmetric case a generalization of Nelson's method which

preserves the bandedness of the matrix was obtained by Ojalvo (1987) and

amended by Mills-Curran (1988) and Dailey (1988). These methods compute the

derivatives of the m eigenvectors corresponding to elgenvalues of

multiplicity m. As stated by Dailey, when the elgenvalues are repeated and

a design variable is perturbed, the eigenvectors "split" into as many as m

distinct eigenvectors. We seek the derivatives of these distinct

eigenvectors which "appear" with design variable perturbation. Using

Dailey's notation, define the eigenvalue problem

KX = AMX (31)

where X contains the m eigenvectors cited previously

A : _I (32)

is the repeated eigenvalue

I is the identity matrix of order m

The eigenvectors which appear as a result of the splitting are contained in

a matrix denoted Z which is related to X as follows

Z -- XY (33)

where Y is a set of orthogonal vectors to be determined. The technique

for calculating Z' as contained in Dailey is outlined next. The vector Y

and the derivative of the multiple elgenvalue A' are obtained as solutions

of the following eigenvalue problem

DY = YA' (34)
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where

D = xT(K' - AM')X

Next in a manner analogus to Nelson (1976) let

Z' - V + ZC

where V is the solution to

(K - AM)V_ (AM' - K')Z + MZA'

(numerically obtained by removing the

the m largest componentsof Z) and C

the solution to the equation

(35)

(36)

(37)

m rows and columns associated with

is a matrix which is obtained as

I
CA' - A'C + _ A'' m -vTMz - zTMv - zTM,z (38)

Equation (38) which requires substantial algebraic manipulations for its

derivations, determines the matrix C and the matrix of second derivatives

of the eigenvalues A''. Fortunately A'' is diagonal and CA' - A'C always

has zero on the diagonal. Therefore we can solve for the matrix C separate

from A'' and the latter matrix only needs to be calculated if it is needed

for some other purpose.

For the case of general matrices, first treated by Lancaster (1964),

Lim et al. (1988) suggest the use of singular value decomposition for

eigenvector derivative calculation. Juang et al. (1988) provide a proof of

existence of derivatives of multiple eigenvalues and eigenvectors for

nondefective analytic matrices. They differentiate between the cases where

the derivatives of the eigenvalues are repeated or nonrepeated and provide

an algorithm for calculation of eigenvector derivatives in both cases.

The modal method was also generalized to the case of multiple

eigenvalues by Chert and Pan (1986).

Before leaving the topic of derivatives associated with repeated

eigenvalues, we note the limited utility of such derivatives. For example
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the eigenproblem is differentiable in terms of a single parame_e:'

as a function of several.

matrix

A = [2 + y x]
x 2

The eigenvalues of A are

but not

This may be demonstrated by the exampl_ where the

(39)

Ai 2 = 2 + y12 ± 7x 2 + y_14 (40)
P

At x = y = 0 the eigenvalues are repeated and _/_x = ±I, _A/_y = 0,1.

However the eigenvalues are not differentiable as a function of both x and

y, that is the relation

d_ = "_x dx + _y dy _:

does not hold. Therefore, the utility of the partial der/ J_,tives is

questionable. The eigenvectors are also discontinuous at _ _,0, Tni_s can

be checked by noting that at (e,O) the eigenvectors are (l,Oj and (0,i) and

at (0,E) they are (1,1) and (I,-I) no matter how small _ is.

Nonlinear Eigenvalue Problems

In flutter and nonlinear vibration problems we encounte -_ eigenvalue

problems of a more general form. Bindolino and Mantegazza (1987) consider

the aeroelastic response which produces a transcendental eige._¢alue p,'oblem

of the form

When differentiated

_A (43dU + dA _A U = - -- U
A d'--x dx _),_ _)x

Using the normalizing condition of Eq. (16) _e obtain

du

= 0 (_;
dx
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Equations (43) and (44) can be solved together for dUldx and dAldx.

Instead, Bindollno and Mantegazza suggest the use of the adjoint method,

using the left elgenvector V satisfying

vTA - O

v _I
m

to obtain

(45)

problem of the form

(K + G(U))U - AMU - 0

with the normalization condition of Eq. (13).

get

(KT - AM)U' - A'MU - [G'(U) + AM]U

where the tangent stiffness matrix KT is

_G

KT - K + _ U

Equation (48) can now be solved using Nelson's method.

to use the left eigenvector satisfying

vT(KT - AM) = 0

to get

A' - - vT[_'(U) + AM']U

uTMu

(47)

Differentiating Eq. (47) we

(48)

(49)

It is also possible

(50)

(51)

VT _AdA U

d--_" VT _A (46)

Jankovlc (1988) used the direct approach to obtain higher-order

derivatives of the elgenvalues and eigenvectors. Hou et al. (1985) and Hou

et al. (1987) consider nonlinear vibrations leading to the eigenvalue
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