25 research outputs found

    The therapeutic potential of a series of orally bioavailable anti-angiogenic microtubule disruptors as therapy for hormone-independent prostate and breast cancers

    Get PDF
    Therapies for hormone-independent prostate and breast cancer are limited, with the effectiveness of the taxanes compromised by toxicity, lack of oral bioavailability and drug resistance. This study aims to identify and characterise new microtubule disruptors, which may have improved efficacy relative to the taxanes in hormone-independent cancer. 2-Methoxy-3-O-sulphamoyl-17β-cyanomethyl-oestra-1,3,5(10)-triene (STX641), 2-methoxy-3-hydroxy-17β-cyanomethyl-oestra-1,3,5(10)-triene (STX640) and 2-methoxyoestradiol-3,17-O,O-bis-sulphamate (STX140) were all potent inhibitors of cell proliferation in a panel of prostate and breast cancer cell lines. STX641 and STX640 significantly inhibited tumour growth in the MDA-MB-231 xenograft model. STX641 inhibited both in vitro and in vivo angiogenesis. Despite good in vivo activity, STX641 was not as potent in vivo as STX140. Therefore, STX140 was evaluated in the prostate hormone-independent PC-3 xenograft model. STX140 had superior efficacy to docetaxel, 2-MeOE2 and bevacizumab. In contrast to vinorelbine, no significant toxicity was observed. Furthermore, STX140 could be dosed daily over a 60-day period leading to tumour regression and complete responses, which were maintained after the cessation of dosing. This study demonstrates that STX641 and STX140 have considerable potential for the treatment of hormone-independent breast and prostate cancer. In contrast to the taxanes, STX140 can be dosed orally, with no toxicity being observed even after prolonged daily dosing

    2-Methoxyoestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer

    Get PDF
    Drug combination therapy is a key strategy to improve treatment efficacy and survival of cancer patients. In this study the effects of combining 2-methoxyoestradiol-3,17-O,O-bis-sulphamate (STX140), a microtubule disruptor, with 2-deoxy-D-glucose (2DG) were assessed in MCF-7 (breast) and LNCaP (prostate) xenograft models in vivo. In mice bearing MCF-7 xenografts, daily p.o. administration of STX140 (5 mg kg−1) resulted in a 46% (P<0.05) reduction of tumour volume. However, the combination of STX140 (5 mg kg−1 p.o.) and 2DG (2 g kg−1 i.p.) reduced tumour volume by 76% (P<0.001). 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate also reduced tumour vessel density. 2-Deoxy-D-glucose alone had no significant effect on tumour volume or vessel density. A similar benefit of the combination treatment was observed in the LNCaP prostate xenograft model. In vitro the degree of inhibition of cell proliferation by STX140 was unaffected by oxygen concentrations. In contrast, the inhibition of proliferation by 2DG was enhanced under hypoxia by 20 and 25% in MCF-7 and LNCaP cells, respectively. The combination of STX140 and 2DG in LNCaP cells under normoxia or hypoxia inhibited proliferation to a greater extent than either compound alone. These results suggest that the antiangiogenic and microtubule disruption activities of STX140 may make tumours more susceptible to inhibition of glycolysis by 2DG. This is the first study to show the benefit of combining a microtubule disruptor with 2DG in the two most common solid tumours

    The in vivo properties of STX243: a potent angiogenesis inhibitor in breast cancer

    Get PDF
    The steroidal-based drug 2-ethyloestradiol-3,17-O,O-bis-sulphamate (STX243) has been developed as a potent antiangiogenic and antitumour compound. The objective of this study was to ascertain whether STX243 is more active in vivo than the clinically relevant drug 2-methoxyoestradiol (2-MeOE2) and the structurally similar compound 2-MeOE2-3,17-O,O-bis-sulphamate (STX140). The tumour growth inhibition efficacy, antiangiogenic potential and pharmacokinetics of STX243 were examined using four in vivo models. Both STX243 and STX140 were capable of retarding the growth of MDA-MB-231 xenograft tumours (72 and 63%, respectively), whereas no inhibition was observed for animals treated with 2-MeOE2. Further tumour inhibition studies showed that STX243 was also active against MCF-7 paclitaxel-resistant tumours. Using a Matrigel plug-based model, in vivo angiogenesis was restricted with STX243 and STX140 (50 and 72%, respectively, using a 10 mg kg−1 oral dose), thereby showing the antiangiogenic activity of both compounds. The pharmacokinetics of STX243 were examined at two different doses using adult female rats. The compound was orally bioavailable (31% after a single 10 mg kg−1 dose) and resistant to metabolism. These results show that STX243 is a potent in vivo drug and could be clinically effective at treating a number of oncological conditions

    BCRP expression does not result in resistance to STX140 in vivo, despite the increased expression of BCRP in A2780 cells in vitro after long-term STX140 exposure

    Get PDF
    The anti-proliferative and anti-angiogenic properties of the endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2), are enhanced in a series of sulphamoylated derivatives of 2-MeOE2. To investigate possible mechanisms of resistance to these compounds, a cell line, A2780.140, eightfold less sensitive to the 3,17-O,O-bis-sulphamoylated derivative, STX140, was derived from the A2780 ovarian cancer cell line by dose escalation. Other cell lines tested did not develop STX140 resistance. RT–PCR and immunoblot analysis demonstrated that breast cancer resistance protein (BCRP) expression is dramatically increased in A2780.140 cells. The cells are cross-resistant to the most structurally similar bis-sulphamates, and to BCRP substrates, mitoxantrone and doxorubicin; but they remain sensitive to taxol, an MDR1 substrate, and to all other sulphamates tested. Sensitivity can be restored using a BCRP inhibitor, and this pattern of resistance is also seen in a BCRP-expressing MCF-7-derived cell line, MCF-7.MR. In mice bearing wild-type (wt) and BCRP-expressing tumours on either flank, both STX140 and mitoxantrone inhibited the growth of the MCF-7wt xenografts, but only STX140 inhibited growth of the MCF-7.MR tumours. In conclusion, STX140, a promising orally bioavailable anti-cancer agent in pre-clinical development, is highly efficacious in BCRP-expressing xenografts. This is despite an increase in BCRP expression in A2780 cells in vitro after chronic dosing with STX140

    A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: A secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study

    Get PDF
    Background Accurate assessment of functional capacity, a predictor of postoperative morbidity and mortality, is essential to improving surgical planning and outcomes. We assessed if all 12 items of the Duke Activity Status Index (DASI) were equally important in reflecting exercise capacity. Methods In this secondary cross-sectional analysis of the international, multicentre Measurement of Exercise Tolerance before Surgery (METS) study, we assessed cardiopulmonary exercise testing and DASI data from 1455 participants. Multivariable regression analyses were used to revise the DASI model in predicting an anaerobic threshold (AT) >11 ml kg −1 min −1 and peak oxygen consumption (VO 2 peak) >16 ml kg −1 min −1, cut-points that represent a reduced risk of postoperative complications. Results Five questions were identified to have dominance in predicting AT>11 ml kg −1 min −1 and VO 2 peak>16 ml.kg −1min −1. These items were included in the M-DASI-5Q and retained utility in predicting AT>11 ml.kg −1.min −1 (area under the receiver-operating-characteristic [AUROC]-AT: M-DASI-5Q=0.67 vs original 12-question DASI=0.66) and VO 2 peak (AUROC-VO2 peak: M-DASI-5Q 0.73 vs original 12-question DASI 0.71). Conversely, in a sensitivity analysis we removed one potentially sensitive question related to the ability to have sexual relations, and the ability of the remaining four questions (M-DASI-4Q) to predict an adequate functional threshold remained no worse than the original 12-question DASI model. Adding a dynamic component to the M-DASI-4Q by assessing the chronotropic response to exercise improved its ability to discriminate between those with VO 2 peak>16 ml.kg −1.min −1 and VO 2 peak<16 ml.kg −1.min −1. Conclusions The M-DASI provides a simple screening tool for further preoperative evaluation, including with cardiopulmonary exercise testing, to guide perioperative management

    Integration of the Duke Activity Status Index into preoperative risk evaluation: a multicentre prospective cohort study.

    Get PDF
    BACKGROUND: The Duke Activity Status Index (DASI) questionnaire might help incorporate self-reported functional capacity into preoperative risk assessment. Nonetheless, prognostically important thresholds in DASI scores remain unclear. We conducted a nested cohort analysis of the Measurement of Exercise Tolerance before Surgery (METS) study to characterise the association of preoperative DASI scores with postoperative death or complications. METHODS: The analysis included 1546 participants (≥40 yr of age) at an elevated cardiac risk who had inpatient noncardiac surgery. The primary outcome was 30-day death or myocardial injury. The secondary outcomes were 30-day death or myocardial infarction, in-hospital moderate-to-severe complications, and 1 yr death or new disability. Multivariable logistic regression modelling was used to characterise the adjusted association of preoperative DASI scores with outcomes. RESULTS: The DASI score had non-linear associations with outcomes. Self-reported functional capacity better than a DASI score of 34 was associated with reduced odds of 30-day death or myocardial injury (odds ratio: 0.97 per 1 point increase above 34; 95% confidence interval [CI]: 0.96-0.99) and 1 yr death or new disability (odds ratio: 0.96 per 1 point increase above 34; 95% CI: 0.92-0.99). Self-reported functional capacity worse than a DASI score of 34 was associated with increased odds of 30-day death or myocardial infarction (odds ratio: 1.05 per 1 point decrease below 34; 95% CI: 1.00-1.09), and moderate-to-severe complications (odds ratio: 1.03 per 1 point decrease below 34; 95% CI: 1.01-1.05). CONCLUSIONS: A DASI score of 34 represents a threshold for identifying patients at risk for myocardial injury, myocardial infarction, moderate-to-severe complications, and new disability

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    In vivo inhibition of angiogenesis by sulphamoylated derivatives of 2-methoxyoestradiol

    Get PDF
    Drugs that inhibit growth of tumours and their blood supply could have considerable therapeutic potential. 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate (2-MeOE2bisMATE) has been shown to inhibit the proliferation of MCF-7 (ER+) breast cancer cells and angiogenesis in vitro. 2-MeOE2bisMATE and its analogue, 17-Cym-2-MeOE2MATE, were investigated for their ability to inhibit in vivo angiogenesis and tumour growth. The mouse Matrigel plug assay for angiogenesis was used to investigate the effect of compounds on neovascularisation and was quantified using a FITC-dextran injection technique. Nude mice bearing tumours derived from MCF-7 cells were used to assess efficacy on tumour growth. Tumour sections were stained for VEGFR-2 and Ki67 to assess tumour angiogenesis and cell proliferation respectively. Matrigel plugs supplemented with basic fibroblast growth factor resulted in increased neovascularisation over 7 days. Oral administration of 2-MeOE2bisMATE for 7 days at 10 or 50 mg kg(−1) significantly reduced neovascularisation to or below control levels respectively. 17-Cym-2-MeOE2MATE at 20 mg kg(−1) was equally effective. 2-MeOE2bisMATE, dosed daily for 21 days, caused a 52% reduction in tumour growth at 5 mg kg(−1) and 38% regression at 20 mg kg(−1). 17-Cym-2-MeOE2MATE (20 mg kg(−1)) reduced tumour growth by 92%. Immunohistochemistry revealed a reduction in angiogenesis and proliferation. Matrigel plug and tumour imaging after FITC-dextran injection indicated that 2-MeOE2bisMATE caused a marked disruption of vasculature. These sulphamoylated oestrogen derivatives have been shown to be potent inhibitors of angiogenesis in vivo. This, together with their ability to inhibit tumour growth, indicates the potential of this new class of drugs for further development for cancer therapy

    Sulphamoylated 2-Methoxyestradiol Analogues Induce Apoptosis in Adenocarcinoma Cell Lines

    Get PDF
    2-Methoxyestradiol (2ME2) is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1–25 μM) was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues
    corecore