3,009 research outputs found
Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation
This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation
Raman scattering in C_{60} and C_{48}N_{12} aza-fullerene: First-principles study
We carry out large scale {\sl ab initio} calculations of Raman scattering
activities and Raman-active frequencies (RAFs) in
aza-fullerene. The results are compared with those of .
Twenty-nine non-degenerate polarized and 29 doubly-degenerate unpolarized RAFs
are predicted for . The RAF of the strongest Raman
signal in the low- and high-frequency regions and the lowest and highest RAFs
for are almost the same as those of .
The study of reveals the importance of electron correlations and
the choice of basis sets in the {\sl ab initio} calculations. Our best
calculated results for with the B3LYP hybrid density functional
theory are in excellent agreement with experiment and demonstrate the desirable
efficiency and accuracy of this theory for obtaining quantitative information
on the vibrational properties of these molecules.Comment: submitted to Phys.Rev.
Constraints from Solar and Reactor Neutrinos on Unparticle Long-Range Forces
We have investigated the impact of long-range forces induced by unparticle
operators of scalar, vector and tensor nature coupled to fermions in the
interpretation of solar neutrinos and KamLAND data. If the unparticle couplings
to the neutrinos are mildly non-universal, such long-range forces will not
factorize out in the neutrino flavour evolution. As a consequence large
deviations from the observed standard matter-induced oscillation pattern for
solar neutrinos would be generated. In this case, severe limits can be set on
the infrared fix point scale, Lambda_u, and the new physics scale, M, as a
function of the ultraviolet (d_UV) and anomalous (d) dimension of the
unparticle operator. For a scalar unparticle, for instance, assuming the
non-universality of the lepton couplings to unparticles to be of the order of a
few per mil we find that, for d_UV=3 and d=1.1, M is constrained to be M >
O(10^9) TeV (M > O(10^10) TeV) if Lambda_u= 1 TeV (10 TeV). For given values of
Lambda_u and d, the corresponding bounds on M for vector [tensor] unparticles
are approximately 100 [3/Sqrt(Lambda_u/TeV)] times those for the scalar case.
Conversely, these results can be translated into severe constraints on
universality violation of the fermion couplings to unparticle operators with
scales which can be accessible at future colliders.Comment: 13 pages, 3 figures. Minor changes due to precision in numerical
factors and correction in figure labels. References added. Conclusions remain
unchange
Constraints on Astro-unparticle Physics from SN 1987A
SN 1987A observations have been used to place constraints on the interactions
between standard model particles and unparticles. In this study we calculate
the energy loss from the supernovae core through scalar, pseudo scalar, vector,
pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate
nuclear matter interacting through one pion exchange. In order to examine the
constraints on we considered the emission of scalar, pseudo
scalar, vector, pseudo vector and tensor through the pair annihilation process
. In addition we have re-examined other pair
annihilation processes. The most stringent bounds on the dimensionless coupling
constants for and are obtained from
nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector
couplings and for
tensor interaction, the best limit on dimensionless coupling is obtained from
and we get .Comment: 12 pages, 2 postscript figure
Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.
Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants
Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach
We study the zero temperature random field Ising model as a model for noise
and avalanches in hysteretic systems. Tuning the amount of disorder in the
system, we find an ordinary critical point with avalanches on all length
scales. Using a mapping to the pure Ising model, we Borel sum the
expansion to for the correlation length exponent. We sketch a
new method for directly calculating avalanche exponents, which we perform to
. Numerical exponents in 3, 4, and 5 dimensions are in good
agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be
obtained from the references quoted in their respective figure captions, the
remaining 19 figures are supplied separately in uuencoded forma
Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay
The next-generation Enriched Xenon Observatory (nEXO) is a proposed
experiment to search for neutrinoless double beta () decay in
Xe with a target half-life sensitivity of approximately years
using kg of isotopically enriched liquid-xenon in a time
projection chamber. This improvement of two orders of magnitude in sensitivity
over current limits is obtained by a significant increase of the Xe
mass, the monolithic and homogeneous configuration of the active medium, and
the multi-parameter measurements of the interactions enabled by the time
projection chamber. The detector concept and anticipated performance are
presented based upon demonstrated realizable background rates.Comment: v2 as publishe
Characterization of an Ionization Readout Tile for nEXO
A new design for the anode of a time projection chamber, consisting of a
charge-detecting "tile", is investigated for use in large scale liquid xenon
detectors. The tile is produced by depositing 60 orthogonal metal
charge-collecting strips, 3~mm wide, on a 10~\si{\cm} 10~\si{\cm}
fused-silica wafer. These charge tiles may be employed by large detectors, such
as the proposed tonne-scale nEXO experiment to search for neutrinoless
double-beta decay. Modular by design, an array of tiles can cover a sizable
area. The width of each strip is small compared to the size of the tile, so a
Frisch grid is not required. A grid-less, tiled anode design is beneficial for
an experiment such as nEXO, where a wire tensioning support structure and
Frisch grid might contribute radioactive backgrounds and would have to be
designed to accommodate cycling to cryogenic temperatures. The segmented anode
also reduces some degeneracies in signal reconstruction that arise in
large-area crossed-wire time projection chambers. A prototype tile was tested
in a cell containing liquid xenon. Very good agreement is achieved between the
measured ionization spectrum of a Bi source and simulations that
include the microphysics of recombination in xenon and a detailed modeling of
the electrostatic field of the detector. An energy resolution =5.5\%
is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only
resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe
Searching for gravitational waves from known pulsars
We present upper limits on the amplitude of gravitational waves from 28
isolated pulsars using data from the second science run of LIGO. The results
are also expressed as a constraint on the pulsars' equatorial ellipticities. We
discuss a new way of presenting such ellipticity upper limits that takes
account of the uncertainties of the pulsar moment of inertia. We also extend
our previous method to search for known pulsars in binary systems, of which
there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure
- âŠ