296 research outputs found

    Development of CGLARE: Design, Fabrication and Characterisation

    Get PDF
    Fibre Metal Laminates (FMLs) are hybrid materials consisting of metal layers bonded to fibre-reinforced polymer layers. CGLARE is an FML developed at NAL consisting of thin aluminum foil combined with carbon-epoxy and glass-epoxy prepreg materials. CGLARE is proposed as the candidate material for the leading edges of wing and empennage of an aircraft as it has superior characteristics in terms of shape retention (due to highly linearly elastic material like carbon/epoxy), energy absorption capability (due to layered structure and plastic deformation), lightning protection (due to the presence of aluminum layers), and also due to its cost effectiveness (lightweight construction and simple production techniques). This paper describes the issues regarding the development of CGLARE such as surface preparation of aluminum foils and bonding of aluminum with glass. Tensile, Compression, ILSS and Flexure testing of ASTM standard CGLARE specimens for different layups have been done. An important design issue is the internal residual stresses built into the laminate during curing due to differential coefficients of thermal expansion of the different material systems. The paper presents these results that indicate some properties of these material systems that could be exploited for energy absorption in the leading edges of the aircraft

    Congruent families and invariant tensors

    Full text link
    Classical results of Chentsov and Campbell state that -- up to constant multiples -- the only 22-tensor field of a statistical model which is invariant under congruent Markov morphisms is the Fisher metric and the only invariant 33-tensor field is the Amari-Chentsov tensor. We generalize this result for arbitrary degree nn, showing that any family of nn-tensors which is invariant under congruent Markov morphisms is algebraically generated by the canonical tensor fields defined in an earlier paper

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Mortality patterns in Vietnam, 2006: Findings from a national verbal autopsy survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate nationally representative statistics on total and cause-specific mortality in Vietnam are lacking due to incomplete capture in government reporting systems. This paper presents total and cause-specific mortality results from a national verbal autopsy survey conducted first time in Vietnam in conjunction with the annual population change survey and discusses methodological and logistical challenges associated with the implementation of a nation-wide assessment of mortality based on surveys.</p> <p>Verbal autopsy interviews, using the WHO standard questionnaire, were conducted with close relatives of the 6798 deaths identified in the 2007 population change survey in Vietnam. Data collectors were health staff recruited from the commune health station who undertook 3-day intensive training on VA interview. The Preston-Coale method assessed the level of completeness of mortality reporting from the population change survey. The number of deaths in each age-sex grouping is inflated according to the estimate of completeness to produce an <it>adjusted </it>number of deaths. Underlying causes of death were aggregated to the International Classification of Diseases Mortality Tabulation List 1. Leading causes of death were tabulated by sex for three broad age groups: 0-14 years; 15-59 years; and 60 years and above.</p> <p>Findings</p> <p>Completeness of mortality reporting was 69% for males and 54% for females with substantial regional variation. The use of VA has resulted in 10% of deaths being classified to ill-defined among males, and 15% among females. More ill-defined deaths were reported among the 60 year or above age group. Incomplete death reporting, wide geographical dispersal of deaths, extensive travel between households, and substantial variation in local responses to VA interviews challenged the implementation of a national mortality and cause of death assessment based on surveys.</p> <p>Conclusions</p> <p>Verbal autopsy can be a viable tool to identify cause of death in Vietnam. However logistical challenges limit its use in conjunction with the national sample survey. Sentinel population clusters for mortality surveillance should be tested to develop an effective and sustainable option for routine mortality and cause of death data collection in Vietnam.</p

    Information geometry and sufficient statistics

    Full text link
    Information geometry provides a geometric approach to families of statistical models. The key geometric structures are the Fisher quadratic form and the Amari-Chentsov tensor. In statistics, the notion of sufficient statistic expresses the criterion for passing from one model to another without loss of information. This leads to the question how the geometric structures behave under such sufficient statistics. While this is well studied in the finite sample size case, in the infinite case, we encounter technical problems concerning the appropriate topologies. Here, we introduce notions of parametrized measure models and tensor fields on them that exhibit the right behavior under statistical transformations. Within this framework, we can then handle the topological issues and show that the Fisher metric and the Amari-Chentsov tensor on statistical models in the class of symmetric 2-tensor fields and 3-tensor fields can be uniquely (up to a constant) characterized by their invariance under sufficient statistics, thereby achieving a full generalization of the original result of Chentsov to infinite sample sizes. More generally, we decompose Markov morphisms between statistical models in terms of statistics. In particular, a monotonicity result for the Fisher information naturally follows.Comment: 37 p, final version, minor corrections, improved presentatio

    A Corticothalamic Circuit Model for Sound Identification in Complex Scenes

    Get PDF
    The identification of the sound sources present in the environment is essential for the survival of many animals. However, these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple sources. The identification of a source under these circumstances is a complex computational problem that is readily solved by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal

    Estimation of stature from the foot and its segments in a sub-adult female population of North India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Establishing personal identity is one of the main concerns in forensic investigations. Estimation of stature forms a basic domain of the investigation process in unknown and co-mingled human remains in forensic anthropology case work. The objective of the present study was to set up standards for estimation of stature from the foot and its segments in a sub-adult female population.</p> <p>Methods</p> <p>The sample for the study constituted 149 young females from the Northern part of India. The participants were aged between 13 and 18 years. Besides stature, seven anthropometric measurements that included length of the foot from each toe (T1, T2, T3, T4, and T5 respectively), foot breadth at ball (BBAL) and foot breadth at heel (BHEL) were measured on both feet in each participant using standard methods and techniques.</p> <p>Results</p> <p>The results indicated that statistically significant differences (p < 0.05) between left and right feet occur in both the foot breadth measurements (BBAL and BHEL). Foot length measurements (T1 to T5 lengths) did not show any statistically significant bilateral asymmetry. The correlation between stature and all the foot measurements was found to be positive and statistically significant (<it>p-value </it>< 0.001). Linear regression models and multiple regression models were derived for estimation of stature from the measurements of the foot. The present study indicates that anthropometric measurements of foot and its segments are valuable in the estimation of stature. Foot length measurements estimate stature with greater accuracy when compared to foot breadth measurements.</p> <p>Conclusions</p> <p>The present study concluded that foot measurements have a strong relationship with stature in the sub-adult female population of North India. Hence, the stature of an individual can be successfully estimated from the foot and its segments using different regression models derived in the study. The regression models derived in the study may be applied successfully for the estimation of stature in sub-adult females, whenever foot remains are brought for forensic examination. Stepwise multiple regression models tend to estimate stature more accurately than linear regression models in female sub-adults.</p

    Cell Pattern in Adult Human Corneal Endothelium

    Get PDF
    A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries

    Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants.</p> <p>Results</p> <p>Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the C<sub>α</sub>-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The C<sub>α</sub>-C<sub>β </sub>bond of the alkoxyl alanine peptide radical is more labile than the peptide bond.</p> <p>Conclusion</p> <p>the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO<sub>2</sub>. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO<sub>2 </sub>are crucial in this O-base oxidation reaction.</p

    Linked read technology for assembling large complex and polyploid genomes

    Get PDF
    Background: Short read DNA sequencing technologies have revolutionized genome assembly by providing high accuracy and throughput data at low cost. But it remains challenging to assemble short read data, particularly for large, complex and polyploid genomes. The linked read strategy has the potential to enhance the value of short reads for genome assembly because all reads originating from a single long molecule of DNA share a common barcode. However, the majority of studies to date that have employed linked reads were focused on human haplotype phasing and genome assembly. Results: Here we describe a de novo maize B73 genome assembly generated via linked read technology which contains ~ 172,000 scaffolds with an N50 of 89 kb that cover 50% of the genome. Based on comparisons to the B73 reference genome, 91% of linked read contigs are accurately assembled. Because it was possible to identify errors with \u3e 76% accuracy using machine learning, it may be possible to identify and potentially correct systematic errors. Complex polyploids represent one of the last grand challenges in genome assembly. Linked read technology was able to successfully resolve the two subgenomes of the recent allopolyploid, proso millet (Panicum miliaceum). Our assembly covers ~ 83% of the 1 Gb genome and consists of 30,819 scaffolds with an N50 of 912 kb. Conclusions: Our analysis provides a framework for future de novo genome assemblies using linked reads, and we suggest computational strategies that if implemented have the potential to further improve linked read assemblies, particularly for repetitive genomes
    corecore