186 research outputs found

    Helicorder digitale

    Get PDF
    Helicorder digital

    Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device.

    Get PDF
    Hydrogenated amorphous silicon (a-Si:H) has been already considered for the objective of passive optical elements, like waveguides and ring resonators, within photonic integrated circuits at λ = 1.55 μm. However the study of its electro-optical properties is still at an early stage, therefore this semiconductor in practice is not considered for light modulation as yet. We demonstrated, for the first time, effective electrooptical modulation in a reverse biased a-Si:H p-i-n waveguiding structure. In particular, phase modulation was studied in a waveguide integrated Fabry-Perot resonator in which the Vπ·Lπ product was determined to be 63 V·cm. Characteristic switch-on and switch-off times of 14 ns were measured. The device employed a wider gap amorphous silicon carbide (a-SiC:H) film for the lower cladding layer instead of silicon oxide. In this way the highest temperature involved in the fabrication process was 170°C, which ensured the desired technological compatibility with CMOS processes. © 2011 Optical Society of America

    Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks

    Get PDF
    Electro optical absorption in hydrogenated amorphous silicon (α-Si:H) - amorphous silicon carbonitride (α-SiCxNγ) multilayers have been studied in two different planar multistacks waveguides. The waveguides were realized by plasma enhanced chemical vapour deposition (PECVD), a technology compatible with the standard microelectronic processes. Light absorption is induced at λ = 1.55 μm through the application of an electric field which induces free carrier accumulation across the multiple insulator/ semiconductor device structure. The experimental performances have been compared to those obtained through calculations using combined two-dimensional (2-D) optical and electrical simulations. © 2008 Optical Society of America

    Metabolomics and psychological features in fibromyalgia and electromagnetic sensitivity

    Get PDF
    Fibromyalgia (FM) as Fibromyalgia and Electromagnetic Sensitivity (IEI-EMF) are a chronic and systemic syndrome. The main symptom is represented by strong and widespread pain in the musculoskeletal system. The exact causes that lead to the development of FM and IEI-EMF are still unknown. Interestingly, the proximity to electrical and electromagnetic devices seems to trigger and/or amplify the symptoms. We investigated the blood plasma metabolome in IEI-EMF and healthy subjects using 1H NMR spectroscopy coupled with multivariate statistical analysis. All the individuals were subjected to tests for the evaluation of psychological and physical features. No significant differences between IEI-EMF and controls relative to personality aspects, Locus of Control, and anxiety were found. Multivariate statistical analysis on the metabolites identified by NMR analysis allowed the identification of a distinct metabolic profile between IEI-EMF and healthy subjects. IEI-EMF were characterized by higher levels of glycine and pyroglutamate, and lower levels of 2-hydroxyisocaproate, choline, glutamine, and isoleucine compared to healthy subjects. These metabolites are involved in several metabolic pathways mainly related to oxidative stress defense, pain mechanisms, and muscle metabolism. The results here obtained highlight possible physiopathological mechanisms in IEI-EMF patients to be better defined

    WSES classification and guidelines for liver trauma

    Get PDF
    The severity of liver injuries has been universally classified according to the American Association for the Surgery of Trauma (AAST) grading scale. In determining the optimal treatment strategy, however, the haemodynamic status and associated injuries should be considered. Thus the management of liver trauma is ultimately based on the anatomy of the injury and the physiology of the patient. This paper presents the World Society of Emergency Surgery (WSES) classification of liver trauma and the management Guidelines

    Wses Classification And Guidelines For Liver Trauma

    Get PDF
    The severity of liver injuries has been universally classified according to the American Association for the Surgery of Trauma (AAST) grading scale. In determining the optimal treatment strategy, however, the haemodynamic status and associated injuries should be considered. Thus the management of liver trauma is ultimately based on the anatomy of the injury and the physiology of the patient. This paper presents the World Society of Emergency Surgery (WSES) classification of liver trauma and the management Guidelines.1

    Pharmacological Management of Atrial Fibrillation: One, None, One Hundred Thousand

    Get PDF
    Abstract atrial fibrillation (AF) is associated with a significant burden of morbidity and increased risk of mortality. Antiarrhythmic drug therapy remains a cornerstone to restore and maintain sinus rhythm for patients with paroxysmal and persistent AF based on current guidelines. However, conventional drugs have limited efficacy, present problematic risks of proarrhythmia and cause significant noncardiac organ toxicity. Thus, inadequacies in current therapies for atrial fibrillation have made new drug development crucial. New antiarrhythmic drugs and new anticoagulant agents have changed the current management of AF. This paper summarizes the available evidence regarding the efficacy of medications used for acute management of AF, rhythm and ventricular rate control, and stroke prevention in patients with atrial fibrillation and focuses on the current pharmacological agents
    corecore