11 research outputs found

    Text-Only Image Captioning with Multi-Context Data Generation

    Full text link
    Text-only Image Captioning (TIC) is an approach that aims to construct a model solely based on text that can accurately describe images. Recently, diffusion models have demonstrated remarkable capabilities in generating high-quality images that are semantically coherent with given texts. This presents an opportunity to generate synthetic training images for TIC. However, we have identified a challenge that the images generated from simple descriptions typically exhibit a single perspective with one or limited contexts, which is not aligned with the complexity of real-world scenes in the image domain. In this paper, we propose a novel framework that addresses this issue by introducing multi-context data generation. Starting with an initial text corpus, our framework employs a large language model to select multiple sentences that describe the same scene from various perspectives. These sentences are then summarized into a single sentence with multiple contexts. We generate simple images using the straightforward sentences and complex images using the summarized sentences through diffusion models. Finally, we train the model exclusively using the synthetic image-text pairs obtained from this process. Experimental results demonstrate that our proposed framework effectively tackles the central challenge we have identified, achieving the state-of-the-art performance on popular datasets such as MSCOCO, Flickr30k, and SS1M

    CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation

    Full text link
    To improve instance-level detection/segmentation performance, existing self-supervised and semi-supervised methods extract either task-unrelated or task-specific training signals from unlabeled data. We show that these two approaches, at the two extreme ends of the task-specificity spectrum, are suboptimal for the task performance. Utilizing too little task-specific training signals causes underfitting to the ground-truth labels of downstream tasks, while the opposite causes overfitting to the ground-truth labels. To this end, we propose a novel Class-Agnostic Semi-Supervised Learning (CA-SSL) framework to achieve a more favorable task-specificity balance in extracting training signals from unlabeled data. CA-SSL has three training stages that act on either ground-truth labels (labeled data) or pseudo labels (unlabeled data). This decoupling strategy avoids the complicated scheme in traditional SSL methods that balances the contributions from both data types. Especially, we introduce a warmup training stage to achieve a more optimal balance in task specificity by ignoring class information in the pseudo labels, while preserving localization training signals. As a result, our warmup model can better avoid underfitting/overfitting when fine-tuned on the ground-truth labels in detection and segmentation tasks. Using 3.6M unlabeled data, we achieve a significant performance gain of 4.7% over ImageNet-pretrained baseline on FCOS object detection. In addition, our warmup model demonstrates excellent transferability to other detection and segmentation frameworks.Comment: Appeared in ECCV202

    Spatial-Semantic Collaborative Cropping for User Generated Content

    No full text
    A large amount of User Generated Content (UGC) is uploaded to the Internet daily and displayed to people world-widely through the client side (mobile and PC). This requires the cropping algorithms to produce the aesthetic thumbnail within a specific aspect ratio on different devices. However, existing image cropping works mainly focus on landmark or landscape images, which fail to model the relations among the multi-objects with the complex background in UGC. Besides, previous methods merely consider the aesthetics of the cropped images while ignoring the content integrity, which is crucial for UGC cropping. In this paper, we propose a Spatial-Semantic Collaborative cropping network (S2CNet) for arbitrary user generated content accompanied by a new cropping benchmark. Specifically, we first mine the visual genes of the potential objects. Then, the suggested adaptive attention graph recasts this task as a procedure of information association over visual nodes. The underlying spatial and semantic relations are ultimately centralized to the crop candidate through differentiable message passing, which helps our network efficiently to preserve both the aesthetics and the content integrity. Extensive experiments on the proposed UGCrop5K and other public datasets demonstrate the superiority of our approach over state-of-the-art counterparts
    corecore