2,678 research outputs found
A compact steep spectrum radio source in NGC1977
A compact steep spectrum radio source (J0535-0452) is located in the sky
coincident with a bright optical rim in the HII region NGC1977. J0535-0452 is
observed to be mas in angular size at 8.44 GHz. The spectrum for the
radio source is steep and straight with a spectral index of -1.3 between 330
and 8440 MHz. No 2 \mu m IR counter part for the source is detected. These
characteristics indicate that the source may be either a rare high redshift
radio galaxy or a millisecond pulsar (MSP). Here we investigate whether the
steep spectrum source is a millisecond pulsar.The optical rim is believed to be
the interface between the HII region and the adjacent molecular cloud. If the
compact source is a millisecond pulsar, it would have eluded detection in
previous pulsar surveys because of the extreme scattering due to the HII
region--molecular cloud interface. The limits obtained on the angular
broadening along with the distance to the scattering screen are used to
estimate the pulse broadening. The pulse broadening is shown to be less than a
few msec at frequencies \gtsim 5 GHz. We therefore searched for pulsed
emission from J0535-0452 at 14.8 and 4.8 GHz with the Green Bank Telescope
(GBT). No pulsed emission is detected to 55 and 30 \mu Jy level at 4.8 and 14.8
GHz. Based on the parameter space explored by our pulsar search algorithm, we
conclude that, if J0535-0452 is a pulsar, then it could only be a binary MSP of
orbital period \ltsim 5 hrs.Comment: Accepted for publication in A&A (3pages, 1 fig
A GPU Implementation for Two-Dimensional Shallow Water Modeling
In this paper, we present a GPU implementation of a two-dimensional shallow
water model. Water simulations are useful for modeling floods, river/reservoir
behavior, and dam break scenarios. Our GPU implementation shows vast
performance improvements over the original Fortran implementation. By taking
advantage of the GPU, researchers and engineers will be able to study water
systems more efficiently and in greater detail.Comment: 9 pages, 1 figur
A High-Frequency Search for Pulsars Within the Central Parsec of SgrA*
We report results from a deep high-frequency search for pulsars within the
central parsec of Sgr A* using the Green Bank Telescope. The observing
frequency of 15 GHz was chosen to maximize the likelihood of detecting normal
pulsars (i.e. with periods of \,ms and spectral indices of ) close to Sgr A*, that might be used as probes of gravity in the
strong-field regime; this is the highest frequency used for such pulsar
searches of the Galactic Center to date. No convincing candidate was detected
in the survey, with a detection threshold of Jy
achieved in two separate observing sessions. This survey represents a
significant improvement over previous searches for pulsars at the Galactic
Center and would have detected a significant fraction ($\gtrsim 5%) of the
pulsars around Sgr A*, if they had properties similar to those of the known
population. Using our best current knowledge of the properties of the Galactic
pulsar population and the scattering material toward Sgr A*, we estimate an
upper limit of 90 normal pulsars in orbit within the central parsec of Sgr A*.Comment: 10 pages, 7 figures, accepted for publication in the ApJ
Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral
The early part of the gravitational wave signal of binary neutron star
inspirals can potentially yield robust information on the nuclear equation of
state. The influence of a star's internal structure on the waveform is
characterized by a single parameter: the tidal deformability lambda, which
measures the star's quadrupole deformation in response to the companion's
perturbing tidal field. We calculate lambda for a wide range of equations of
state and find that the value of lambda spans an order of magnitude for the
range of equation of state models considered.
An analysis of the feasibility of discriminating between neutron star
equations of state with gravitational wave observations of the early part of
the inspiral reveals that the measurement error in lambda increases steeply
with the total mass of the binary. Comparing the errors with the expected range
of lambda, we find that Advanced LIGO observations of binaries at a distance of
100 Mpc will probe only unusually stiff equations of state, while the proposed
Einstein Telescope is likely to see a clean tidal signature.Comment: 12 pages, submitted to PR
VLBI for Gravity Probe B. VII. The Evolution of the Radio Structure of IM Pegasi
We present measurements of the total radio flux density as well as
very-long-baseline interferometry (VLBI) images of the star, IM Pegasi, which
was used as the guide star for the NASA/Stanford relativity mission Gravity
Probe B. We obtained flux densities and images from 35 sessions of observations
at 8.4 GHz (wavelength = 3.6 cm) between 1997 January and 2005 July. The
observations were accurately phase-referenced to several extragalactic
reference sources, and we present the images in a star-centered frame, aligned
by the position of the star as derived from our fits to its orbital motion,
parallax, and proper motion. Both the flux density and the morphology of IM Peg
are variable. For most sessions, the emission region has a single-peaked
structure, but 25% of the time, we observed a two-peaked (and on one occasion
perhaps a three-peaked) structure. On average, the emission region is elongated
by 1.4 +- 0.4 mas (FWHM), with the average direction of elongation being close
to that of the sky projection of the orbit normal. The average length of the
emission region is approximately equal to the diameter of the primary star. No
significant correlation with the orbital phase is found for either the flux
density or the direction of elongation, and no preference for any particular
longitude on the star is shown by the emission region.Comment: Accepted for publication in the Astrophysical Journal Supplement
Serie
VLBA measurement of the transverse velocity of the magnetar XTE J1810-197
We have obtained observations of the magnetar XTE J1810-197 with the Very
Long Baseline Array at two epochs separated by 106 days, at wavelengths of 6 cm
and 3.6 cm. Comparison of the positions yields a proper motion value of
13.5+-1.0 mas/yr at an equatorial position angle of 209.4+-2.4 deg (east of
north). This value is consistent with a lower-significance proper motion value
derived from infrared observations of the source over the past three years,
also reported here. Given its distance of 3.5+-0.5 kpc, the implied transverse
velocity corrected to the local standard of rest is 212+-35 km/s (1 sigma). The
measured velocity is slightly below the average for normal young neutron stars,
indicating that the mechanism(s) of magnetar birth need not lead to high
neutron star velocities. We also use Australia Telescope Compact Array, Very
Large Array, and these VLBA observations to set limits on any diffuse emission
associated with the source on a variety of spatial scales, concluding that the
radio emission from XTE J1810-197 is >96% pulsed.Comment: Accepted for publication in The Astrophysical Journal. Six pages, 2
figure
- …
