1,045 research outputs found

    Kin selection and the evolution of social information use in animal conflict

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Animals often use social information about conspecifics in making decisions about cooperation and conflict. While the importance of kin selection in the evolution of intraspecific cooperation and conflict is widely acknowledged, few studies have examined how relatedness influences the evolution of social information use. Here we specifically examine how relatedness affects the evolution of a stylised form of social information use known as eavesdropping. Eavesdropping involves individuals escalating conflicts with rivals observed to have lost their last encounter and avoiding fights with those seen to have won. We use a game theoretical model to examine how relatedness affects the evolution of eavesdropping, both when strategies are discrete and when they are continuous or mixed. We show that relatedness influences the evolution of eavesdropping, such that information use peaks at intermediate relatedness. Our study highlights the importance of considering kin selection when exploring the evolution of complex forms of information use.Dr. Baker was supported by a fellowship from the Department of Organismic and Evolutionary Biology at Harvard University, and by National Science Foundation (NSF) SES-0750480 and the European Science Foundation/European Collaborative Research (ESF/EUROCORES) program’s support for the The Evolution of Cooperation and Trading (TECT) project. Dr. Rankin thanks the Swiss National Science Foundation (Grants 31003A-125457 and PZ00P3-121800) and the University of Zu¨rich Forschungskredit, and Dr. Dall thanks the Natural Environment Research Council UK (NE/D014352/1) for funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Interpreting the results of patient reported outcome measures in clinical trials: The clinician's perspective

    Get PDF
    This article deals with the problem of interpreting health-related quality of life (HRQL) outcomes in clinical trials. First, we will briefly describe how dichotomization and item response theory can facilitate interpretation. Based on examples from the medical literature for the interpretation of HRQL scores we will show that dichotomies may help clinicians understand information provided by HRQL instruments in RCTs. They can choose thresholds to calculate proportions of patients benefiting based on absolute scores or change scores. For example, clinicians interpreting clinical trial results could consider the difference in the proportion of patients who achieve a mean score of 50 before and after an intervention on a scale from 1 to 100. For the change score approach, they could consider the proportion of patients who have changed by a score of 5 or more. Finally, they can calculate the proportion of patients benefiting and transform these numbers into a number needed to treat or natural frequencies. Second, we will describe in more detail an approach to the interpretation of HRQL scores based on the minimal important difference (MID) and proportions. The MID is the smallest difference in score in the outcome of interest that informed patients or informed proxies perceive as important, either beneficial or harmful, and that would lead the patient or clinician to consider a change in the management. Any change in management will depend on the downsides, including cost and inconvenience, associated with the intervention. Investigators can help with the interpretation of HRQL scores by determining the MID of an HRQL instrument and provide mean differences in relation to the MID. For instance, for an MID of 0.5 on a seven point scale investigators could provide the mean change on the instrument as well as the proportion of patients with scores greater than the MID. Thus, there are several steps investigators can take to facilitate this process to help bringing HRQL information closer to the bedside

    Predation and infanticide influence ideal free choice by a parrot occupying heterogeneous tropical habitats

    Get PDF
    The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    A Conserved Function of C. elegans CASY-1 Calsyntenin in Associative Learning

    Get PDF
    BACKGROUND: Whole-genome association studies in humans have enabled the unbiased discovery of new genes associated with human memory performance. However, such studies do not allow for a functional or causal testing of newly identified candidate genes. Since polymorphisms in Calsyntenin 2 (CLSTN2) showed a significant association with episodic memory performance in humans, we tested the C. elegans CLSTN2 ortholog CASY-1 for possible functions in the associative behavior of C. elegans. METHODOLOGY/PRINCIPAL FINDINGS: Using three different associative learning paradigms and functional rescue experiments, we show that CASY-1 plays an important role during associative learning in C. elegans. Furthermore, neuronal expression of human CLSTN2 in C. elegans rescues the learning defects of casy-1 mutants. Finally, genetic interaction studies and neuron-specific expression experiments suggest that CASY-1 may regulate AMPA-like GLR-1 glutamate receptor signaling. CONCLUSION/SIGNIFICANCE: Our experiments demonstrate a remarkable conservation of the molecular function of Calsyntenins between nematodes and humans and point at a role of C. elegans casy-1 in regulating a glutamate receptor signaling pathway

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
    corecore