481 research outputs found
Improved Information Outage Rate in Certain MIMO Systems
We propose a simple class of encoding/decoding techniques which can be used to improve the information outage rate of certain multiple-input multiple-output (MIMO) systems. Gains in outage rate can be achieved at low to moderate signal to noise ratios in MIMO systems which have fewer receive antennas than transmit antennas. This performance improvement is due to extra ``virtual'' receive antennas which are created with low complexity signal processing. A simple space-time block code system using virtual receive antennas is also investigated
Multi-Dimensional Space-Time Multilevel Codes
Was accidently published online in September edition 5(11): 2569-2577. Should have been November. September edition retracted and redirected to the November edition.To date there has been little work done on multilevel codes for the space-time environment. In this paper we develop multi-dimensional space-time multilevel codes (ST-MLCs). Several construction methods are proposed, including a coset code approach. The proposed space-time multilevel encoders partition a 2Nt-dimensional signalling space, which spans all Nt transmit antennas. The multi-dimensional partitioning can be designed to reduce the complexity of detection/ decoding.We develop a spacetime multistage decoder for the proposed ST-MLCs. It allows the complexity of soft decision decoding to be significantly reduced compared to a single level approach. In addition, significant performance gains over a single level approach are obtained
Utilization of the Building-Block Approach in Structural Mechanics Research
In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are included from recent research and development programs for both subsonic and supersonic transports
Rate of torque development and striatal shape in individuals with prodromal Huntington's disease
Indexación ScopusThe aim of the present study was to quantify explosive joint torque or the ability to develop joint torque rapidly, typically measured as the rate of torque development, in individuals with prodromal Huntington’s disease and healthy controls and its associations with measures of disease burden and striatal pathology. Twenty prodromal Huntington’s disease and 19 healthy control individuals volunteered for this study. Plantar flexor isometric rate of torque development values were evaluated using isokinetic dynamometry. Pathological changes in striatal shape were evaluated using magnetic resonance imaging. Disease burden was evaluated using the disease burden score and cytosine-adenine-guanine age product score. No statistical differences in the rate of torque development were observed between individuals with prodromal Huntington’s disease and healthy controls. However, significant associations were observed between the rate of torque development values and measures of disease burden (r = −0.42 to −0.69) and striatal pathology (r = 0.71–0.60) in individuals with prodromal Huntington’s disease. We found significant associations between lower rate of torque development values and greater striatal shape deflation and disease burden and striatal pathology in individuals with prodromal Huntington’s disease. While no significant differences in the rate of torque development were found between prodromal Huntington’s disease and healthy controls, the noted associations suggest that differences may emerge as the disease advances, which should be investigated longitudinally in future studies. © 2020, The Author(s).https://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-020-72042-
Pulsars as Fantastic Objects and Probes
Pulsars are fantastic objects, which show the extreme states of matters and
plasma physics not understood yet. Pulsars can be used as probes for the
detection of interstellar medium and even the gravitational waves. Here I
review the basic facts of pulsars which should attract students to choose
pulsar studies as their future projects.Comment: Invited Lecture on the "First Kodai-Trieste Workshop on Plasma
Astrophysics", Kodaikanal Obs, India. Aug.27-Sept.7th, 2007. In: "Turbulence,
Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes". Get a
copy from: http://www.springerlink.com/content/978-1-4020-8867-
Observation of the Charmed Baryon Decays to , , and
We have observed two new decay modes of the charmed baryon into
and using data collected with the
CLEO II detector. We also present the first measurement of the branching
fraction for the previously observed decay mode . The branching fractions for these three modes relative to
are measured to be , , and , respectively.Comment: 12 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance
We have made a first measurement of the lepton momentum spectrum in a sample
of events enriched in neutral B's through a partial reconstruction of B0 -->
D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the
Upsilon(4S) resonance by the CLEO II detector, is compared directly to the
inclusive lepton spectrum from all Upsilon(4S) events in the same data set.
These two spectra are consistent with having the same shape above 1.5 GeV/c.
From the two spectra and two other CLEO measurements, we obtain the B0 and B+
semileptonic branching fractions, b0 and b+, their ratio, and the production
ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950
(+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57
+- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes,
tau+/tau0.Comment: 14 page, postscript file also available at
http://w4.lns.cornell.edu/public/CLN
Production and Decay of D_1(2420)^0 and D_2^*(2460)^0
We have investigated and final states and
observed the two established charmed mesons, the with mass
MeV/c and width MeV/c and
the with mass MeV/c and width
MeV/c. Properties of these final states, including
their decay angular distributions and spin-parity assignments, have been
studied. We identify these two mesons as the doublet predicted
by HQET. We also obtain constraints on {\footnotesize } as a function of the cosine of the relative phase of the two
amplitudes in the decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by
sending mail to: [email protected]
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
- …