18 research outputs found
Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant
Semi-quantitative RT-PCR for tobacco VIGS lines of 13 knocked down TFs induced 2 h post oxalic acid treatment (20 mM) as compared to their WT and VIGS line with empty pTRV2 (V2) plants. Amplicon sizes of different genes and primers used are shown in Additional file 5: Table S3. The Nbactin gene was used as the house-keeping control. Gene codes refer to those indicated in Additional file 3: Table S2. (DOCX 684 kb
Transcriptomic and metabolic responses of Calotropis procera to salt and drought stress
Background:
Calotropis procera is a wild plant species in the family Apocynaceae that is able to grow in harsh, arid and heat stressed conditions. Understanding how this highly adapted plant persists in harsh environments should inform future efforts to improve the hardiness of crop and forage plant species. To study the plant response to droμght and osmotic stress, we treated plants with polyethylene glycol and NaCl and carried out transcriptomic and metabolomics measurements across a time-course of five days.
Results:
We identified a highly dynamic transcriptional response across the time-course including dramatic changes in inositol signaling, stress response genes and cytokinins. The resulting metabolome changes also involved sharp increases of myo-inositol, a key signaling molecule and elevated amino acid metabolites at later times.
Conclusions:
The data generated here provide a first glimpse at the expressed genome of C. procera, a plant that is exceptionally well adapted to arid environments. We demonstrate, through transcriptome and metabolome analysis that myo-inositol signaling is strongly induced in response to drought and salt stress and that there is elevation of amino acid concentrations after prolonged osmotic stress. This work should lay the foundations of future studies in adaptation to arid environments
Isolation and Molecular Identification of Bacterial Strains to Study Biofilm Formation and Heavy Metals Resistance in Saudi Arabia
Heavy metals found in nature and the excessive accumulations of heavy metals have an impact on humans and animals. Different effects resulted from the toxicity of heavy metal, that damage the functioning of different organs: brain, lungs, kidney and other essential organs and lowering the levels of energy. Cadmium and lead considered being toxic to organisms in a particular concentration. Patients with renal failure concerned contaminated drinking water with cadmium and lead. Biofilm produced by microbes and it is important for the remediation of pollutants. This study aimed to isolate and investigate the ability of bacterial isolates to produce a biofilm that can resistance heavy metals (cadmium chloride (CdCl2) and lead nitrate Pb (No3)2). Isolates were isolated from soil sample located at different locations from Saudi Arabia (Makkah, Taif and Jeddah). Fifty isolates have been tested for formation of biofilm by two methods. First method was Congo Red Agar CRA and the second was Tissue Culture Plate TCP. Results revealed that 3 out of 50 isolates showed high biofilm formation. The three (A2, ST and PS) isolates that form strong biofilm were screened primarily on nutrient agar plate contain 7ppm concentration of CdCl2 and Pb (NO3)2. Results indicated that all three isolates were resistance. The maximum tolerance concentration (MTC) of three (A2, ST and PS) isolates studied on nutrient agar plate supplemented with different concentrations from CdCl2 and Pb (NO3)2 respectively. Results indicated that MTC values of Pb (NO3)2 were up to (450, 350 and 500 ppm) for ST, A2 and PS isolates respectively. While in CdCl2 the MTC values were (150, 120 and 250 ppm) for ST, A2 and PS isolates respectively. The effect of CdCl2 and Pb (NO3)2 on bacterial growth using spectrophotometer, and results indicated that all three isolates (A2, ST and PS) growth decreased with the increase in concentration of Pb (NO3)2 and CdCl2. Three isolates were identified by biochemical and 16S rRNA gene. The isolates identified as B. cereus A2, B. cereus ST and P.aeruginosa PS and submitted to NCBI under accretion numbers (MK450303 and MK450304 for B. cereus A2, B. cereus ST) respectively. Plasmid curing was studied using the method of elevated temperature, and results showed that all cured B. cereus A2 and P. aeruginosa PS colonies were resistance to 7ppm of CdCl2 and Pb (NO3)2 while B. cereus ST showed different pattern of resistance after curing. B. cereus ST selected for test removal Pb (NO3)2 and CdCl2 using inductively coupled plasma optical emission spectrometry (ICP-OES). Using ICPOES showed removal lead up to 93% while in cadmium to 49 %. Antimicrobial susceptibilities patterns of identified bacteria were determined. All tested isolated strains showed resistance against to 3 or more antibiotics. Three strains B. cereus A2, B. cereus ST and P. aeruginosa PS that isolated from soil, showed the highest biofilm formation which considered important factor for heavy metals resistance. The biofilm represents a very renewable, promising, cost-effective and easy biotechnology for treatment of wide range contaminated effluents
Data from: Plastome sequencing of ten nonmodel crop species uncovers a large insertion of mitochondrial DNA in cashew
In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative rpl22 in cinnamon (Cinnamomum verum J. Presl) and other sequenced Lauraceae and an apparent functional transfer of rpl23 to the nucleus of quinoa (Chenopodium quinoa Willd.). In the orchard tree cashew (Anacardium occidentale L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact ccmB open reading frame. Using three plastome markers for five species of Anacardium, we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated
AOE_Mt-K101-22contigs
Mitochondrial contigs of Anacardium occidentale (Cashew) assembled by Velvet assembler with a 101 kmer size
Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew
In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated
Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.
Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl) across four time intervals (0, 2, 12 and 24 h) to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR) proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS) production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged