9 research outputs found

    A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y

    Get PDF
    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.National Science Foundation/[DBI-ABI 0965596]/NSF/Estados UnidosNational Science Foundation/[DBI-1356529]/NSF/Estados UnidosNational Science Foundation/[IIS-1453527]/NSF/Estados UnidosNational Science Foundation/[IIS-1421908]/NSF/Estados UnidosNational Science Foundation/[CCF-1439057]/NSF/Estados UnidosNational Institutes of Health/[1T32GM102057-0A1]/NIH/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    aKmerBroom: Ancient oral DNA decontamination using Bloom filters on k-mer sets

    No full text
    International audienceDental calculus samples are modeled as a mixture of DNA coming from dental plaque and contaminants. Current computational decontamination methods such as Recentrifuge and DeconSeq require either a reference database or sequenced negative controls, and therefore have limited use cases. We present a reference-free decontamination tool tailored for the removal of contaminant DNA of ancient oral sample called aKmerBroom. Our tool builds a Bloom filter of known ancient and modern oral k-mers, then scans an input set of ancient metagenomic reads using multiple passes to iteratively retain reads likely to be of oral origin. On synthetic data, aKmerBroom achieves over 89.53% sensitivity and 94.00 specificity. On real datasets, aKmerBroom shows higher read retainment (+60% on average) than other methods. We anticipate aKmerBroom will be a valuable tool for the processing of ancient oral samples as it will prevent contaminated datasets from being completely discarded in downstream analyses
    corecore