36 research outputs found

    The confound of hemodynamic response function variability in human resting-state functional MRI studies

    Get PDF
    Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity with the hemodynamic response function (HRF) coupling it with unmeasured neural activity. The HRF, modulated by several non-neural factors, is variable across brain regions, individuals and populations. Yet, a majority of human resting-state fMRI connectivity studies continue to assume a non-variable HRF. In this article, with supportive prior evidence, we argue that HRF variability cannot be ignored as it substantially confounds within-subject connectivity estimates and between-subjects connectivity group differences. We also discuss its clinical relevance with connectivity impairments confounded by HRF aberrations in several disorders. We present limited data on HRF differences between women and men, which resulted in a 15.4% median error in functional connectivity estimates in a group-level comparison. We also discuss the implications of HRF variability for fMRI studies in the spinal cord. There is a need for more dialogue within the community on the HRF confound, and we hope that our article is a catalyst in the process

    Parameterized hemodynamic response function data of healthy individuals obtained from resting-state functional MRI in a 7T MRI scanner

    Get PDF
    Functional magnetic resonance imaging (fMRI), being an indirect measure of brain activity, is mathematically defined as a convolution of the unmeasured latent neural signal and the hemodynamic response function (HRF). The HRF is known to vary across the brain and across individuals, and it is modulated by neural as well as non-neural factors. Three parameters characterize the shape of the HRF, which is obtained by performing deconvolution on resting-state fMRI data: response height, time-to-peak and full-width at half-max. The data provided here, obtained from 47 healthy adults, contains these three HRF parameters at every voxel in the brain, as well as HRF parameters from the default-mode network (DMN). In addition, we have provided functional connectivity (FC) data from the same DMN regions, obtained for two cases: data with deconvolution (HRF variability minimized) and data with no deconvolution (HRF variability corrupted). This would enable researchers to compare regional changes in HRF with corresponding FC differences, to assess the impact of HRF variability on FC. Importantly, the data was obtained in a 7T MRI scanner. While most fMRI studies are conducted at lower field strengths, like 3T, ours is the first study to report HRF data obtained at 7T. FMRI data at ultra-high fields contains larger contributions from small vessels, consequently HRF variability is lower for small vessels at higher field strengths. This implies that findings made from this data would be more conservative than from data acquired at lower fields, such as 3T. Results obtained with this data and further interpretations are available in our recent research study (Rangaprakash et al., in press) [1]. This is a valuable dataset for studying HRF variability in conjunction with FC, and for developing the HRF profile in healthy individuals, which would have direct implications for fMRI data analysis, especially resting-state connectivity modeling. This is the first public HRF data at 7T

    Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI

    Get PDF
    Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD

    FMRI hemodynamic response function (HRF) as a novel marker of brain function: applications for understanding obsessive-compulsive disorder pathology and treatment response

    Get PDF
    The hemodynamic response function (HRF) represents the transfer function linking neural activity with the functional MRI (fMRI) signal, modeling neurovascular coupling. Since HRF is influenced by non-neural factors, to date it has largely been considered as a confound or has been ignored in many analyses. However, underlying biophysics suggests that the HRF may contain meaningful correlates of neural activity, which might be unavailable through conventional fMRI metrics. Here, we estimated the HRF by performing deconvolution on resting-state fMRI data from a longitudinal sample of 25 healthy controls scanned twice and 44 adults with obsessive-compulsive disorder (OCD) before and after 4-weeks of intensive cognitive-behavioral therapy (CBT). HRF response height, time-to-peak and full-width at half-maximum (FWHM) in OCD were abnormal before treatment and normalized after treatment in regions including the caudate. Pre-treatment HRF predicted treatment outcome (OCD symptom reduction) with 86.4% accuracy, using machine learning. Pre-treatment HRF response height in the caudate head and time-to-peak in the caudate tail were top-predictors of treatment response. Time-to-peak in the caudate tail, a region not typically identified in OCD studies using conventional fMRI activation or connectivity measures, may carry novel importance. Additionally, pre-treatment response height in caudate head predicted post-treatment OCD severity (R = -0.48, P = 0.001), and was associated with treatment-related OCD severity changes (R = -0.44, P = 0.0028), underscoring its relevance. With HRF being a reliable marker sensitive to brain function, OCD pathology, and intervention-related changes, these results could guide future studies towards novel discoveries not possible through conventional fMRI approaches like standard BOLD activation or connectivity

    Investigating the Correspondence of Clinical Diagnostic Grouping With Underlying Neurobiological and Phenotypic Clusters Using Unsupervised Machine Learning

    Get PDF
    Many brain-based disorders are traditionally diagnosed based on clinical interviews and behavioral assessments, which are recognized to be largely imperfect. Therefore, it is necessary to establish neuroimaging-based biomarkers to improve diagnostic precision. Resting-state functional magnetic resonance imaging (rs-fMRI) is a promising technique for the characterization and classification of varying disorders. However, most of these classification methods are supervised, i.e., they require a priori clinical labels to guide classification. In this study, we adopted various unsupervised clustering methods using static and dynamic rs-fMRI connectivity measures to investigate whether the clinical diagnostic grouping of different disorders is grounded in underlying neurobiological and phenotypic clusters. In order to do so, we derived a general analysis pipeline for identifying different brain-based disorders using genetic algorithm-based feature selection, and unsupervised clustering methods on four different datasets; three of them—ADNI, ADHD-200, and ABIDE—which are publicly available, and a fourth one—PTSD and PCS—which was acquired in-house. Using these datasets, the effectiveness of the proposed pipeline was verified on different disorders: Attention Deficit Hyperactivity Disorder (ADHD), Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), Post-Traumatic Stress Disorder (PTSD), and Post-Concussion Syndrome (PCS). For ADHD and AD, highest similarity was achieved between connectivity and phenotypic clusters, whereas for ASD and PTSD/PCS, highest similarity was achieved between connectivity and clinical diagnostic clusters. For multi-site data (ABIDE and ADHD-200), we report site-specific results. We also reported the effect of elimination of outlier subjects for all four datasets. Overall, our results suggest that neurobiological and phenotypic biomarkers could potentially be used as an aid by the clinician, in additional to currently available clinical diagnostic standards, to improve diagnostic precision. Data and source code used in this work is publicly available at https://github.com/xinyuzhao/identification-of-brain-based-disorders.git

    An eight‐channel Tx dipole and 20‐channel Rx loop coil array for MRI of the cervical spinal cord at 7 tesla

    Get PDF
    RÉSUMÉ: The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1+ uniformity, power efficiency, and/or specific absorption rate efficiency. B1+ homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord

    Spinal cord dysfunction in patients with Alzheimer's disease

    No full text

    Estimated hemodynamic response function parameters obtained from resting state BOLD fMRI signals in subjects with autism spectrum disorder and matched healthy subjects

    No full text
    In Functional magnetic resonance imaging (fMRI), the blood oxygen level dependent (BOLD) signal is modeled as a convolution of the hemodynamic response function (HRF) and the unmeasured latent neural signal. Although most cortical and subcortical brain regions share the canonical shape of the HRF, the temporal structure of HRFs are variable across brain regions and subjects. This variability is induced by both neural and non-neural factors. The variability between subjects can be examined by three parameters that characterize the HRF: response height (RH), time-to-peak (TTP) and full-width at half-max (FWHM). This data provides three HRF parameters at every voxel, obtained from Autism Spectrum Disorder (ASD) patients (N = 531), and matched healthy controls (N = 571). Since ongoing studies suggest that non-standard populations have important differences in their HRFs when compared with healthy control, this data set is valuable in studying variability of HRF in ASD group and inferring the underlying pathology that also affects the HRF. It also has implications for fMRI analyses like resting-sate connectivity analysis

    Aberrant hemodynamic responses in autism: Implications for resting state fMRI functional connectivity studies

    No full text
    Functional MRI (fMRI) is modeled as a convolution of the hemodynamic response function (HRF) and an unmeasured latent neural signal. However, HRF itself is variable across brain regions and subjects. This variability is induced by both neural and non-neural factors. Aberrations in underlying neurochemical mechanisms, which control HRF shape, have been reported in autism spectrum disorders (ASD). Therefore, we hypothesized that this will lead to voxel-specific, yet systematic differences in HRF shape between ASD and healthy controls. As a corollary, we also hypothesized that such alterations will lead to differences in estimated functional connectivity in fMRI space compared to latent neural space. To test these hypotheses, we performed blind deconvolution of resting-state fMRI time series acquired from large number of ASD and control subjects obtained from the Autism Brain Imaging Data Exchange (ABIDE) database (N = 1102). Many brain regions previously implicated in autism showed systematic differences in HRF shape in ASD. Specifically, we found that precuneus had aberrations in all HRF parameters. Consequently, we obtained precuneus-seed-based functional connectivity differences between ASD and controls using fMRI as well as using latent neural signals. We found that non-deconvolved fMRI data failed to detect group differences in connectivity between precuneus and certain brain regions that were instead observed in deconvolved data. Our results are relevant for the understanding of hemodynamic and neurochemical aberrations in ASD, as well as have methodological implications for resting-state functional connectivity studies in Autism, and more generally in disorders that are accompanied by neurochemical alterations that may impact HRF shape. Keywords: Resting-state fMRI, Deconvolution, Autism, Hemodynamic response function (HRF), HRF variability, Seed-based functional connectivit
    corecore