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Purpose: fMRI is the convolution of the hemodynamic response function (HRF) and
unmeasured neural activity. HRF variability (HRFv) across the brain could, in principle,
alter functional connectivity (FC) estimates from resting-state fMRI (rs-fMRI). Given
that HRFv is driven by both neural and non-neural factors, it is problematic when it
confounds FC. However, this aspect has remained largely unexplored even though FC
studies have grown exponentially. We hypothesized that HRFv confounds FC estimates
in the brain’s default-mode-network.

Methods: We tested this hypothesis using both simulations (where the ground truth is
known and modulated) as well as rs-fMRI data obtained in a 7T MRI scanner (N5 47,
healthy). FC was obtained using 2 pipelines: data with hemodynamic deconvolution
(DC) to estimate the HRF and minimize HRFv, and data with no deconvolution (NDC,
HRFv-ignored). DC and NDC FC networks were compared, along with regional HRF
differences, revealing potential false connectivities that resulted from HRFv.

Results: We found evidence supporting our hypothesis using both simulations and
experimental data. With simulations, we found that HRFv could cause a change of up to
50% in FC. With rs-fMRI, several potential false connectivities attributable to HRFv,
with majority connections being between different lobes, were identified. We found a
double exponential relationship between the magnitude of HRFv and its impact on FC,
with a mean/median error of 30.5/11.5% caused in FC by HRF confounds.

Conclusion: HRFv, if ignored, could cause identification of false FC. FC findings
from HRFv-ignored data should be interpreted cautiously. We suggest deconvolution
to minimize HRFv.
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1 | INTRODUCTION

fMRI is a popularly used technique for studying neural corre-
lates of brain functioning. However, one limitation of fMRI is
that it is not a direct measure of neural activity, because it
measures changes in blood oxygenation level, which is
merely modulated by neural activity. Blood oxygenation is
also modulated by the vascular structure, hematocrit, and neu-
rochemicals, which couple neural activity with blood flow,
volume, and oxygenation. The mathematical transfer function
between neural activity and its corresponding blood oxygen-
ation level-dependent (BOLD) fMRI signal is called the
hemodynamic response function (HRF). It is dependent on
cerebrovascular reactivity and neurovascular coupling.1 Most
studies assume a standard whole-brain canonical HRF during
analysis (typically made of 2 gamma functions), although
previous works show HRF variability for different brain
regions and across subjects.2–5 The variability of non-neural
components of HRF across the brain as well as across individ-
uals2,3 is problematic. Since only neural activity is of interest
in most fMRI studies, interpretation of fMRI findings is often
clouded because of the aforementioned non-neural sources of
variability in fMRI. This makes the interpretation of fMRI
results challenging as it would be unclear as to whether the
observed changes are due to neural activity or HRF variability
or a combination of the two.

A recent article debating cellular neuroscience’s view-
points on BOLD fMRI6 presented numerous caveats while
interpreting fMRI results, which demands careful considera-
tion based on the underlying cellular mechanisms. They
comment on neurovascular dynamics or HRF variability,
which is one such issue, as follows: “advances in cellular
neuroscience, demonstrating differences in this neurovascular
relationship in different brain regions, conditions or patholo-
gies are often not accounted for when interpreting BOLD.”
They suggest the community use computational modeling
(e.g., deconvolution) to mitigate the issue. Our work attempts to
advance these findings by studying the impact of HRF variabili-
ty on fMRI functional connectivity (FC) and by illustrating how
computational modeling such as deconvolution could mitigate
the issue.

The human brain’s capacity is largely attributable to its
high interconnectedness; hence, the study of brain connectiv-
ity has gained enormous importance over the last decade.
The most widely studied phenomenon of FC measures co-
activation of pairs of brain regions. Although HRF variability
is known to influence the fMRI signal,2 a systematic study of
its impact on FC has not emerged. In this work, we study the
effect of HRF variability on fMRI FC in the default-mode
network (DMN)7 of the brain. Our study assumes importance
given that the number of fMRI FC studies have been grow-
ing exponentially (1535 publications in 2016, and 1994

publications in 2017), yet most of them ignore this
variability caused by hemodynamics.

One can classify the variability of the HRF into 3 main
classes: (1) intra-subject variability (HRF difference across
different brain regions in the same individual), (2) intra-group
inter-subject variability (HRF difference across different
healthy individuals, for a given location in the brain), and (3)
inter-group variability (HRF difference between a healthy and
a pathological group for a given location in the brain, arising
partly because of vascular and neurochemical disturbances
owing to pathology). Each of these could potentially cause
misleading results during fMRI data analysis. Intra-subject
variability could lead to misclassifying true strong connectiv-
ities as weak, and true weak connectivities as strong. HRF
variability’s effect on activation analysis could be alleviated,
in part, by using time and dispersion derivatives in the general
linear model.8 Although much attention has been received on
the effect of HRF variability on lag-based effective connectiv-
ity models,9,10 its effect on zero-lag FC models has not been
explored. We address this issue by investigating the effect of
intra-subject HRF variability on zero-lag FC analysis. Specifi-
cally, we investigated the effect of intra-subject HRF variabil-
ity on resting-state FC between default mode network (DMN)
regions in healthy young adults.

We hypothesized that the variability in HRF, which
depends on both neural and non-neural factors (such as hemat-
ocrit, variable density, and size of vasculature, lipid/alcohol/
caffeine ingestion, global magnetic susceptibilities, partial
volume imaging of veins, pulse/respiration differences, and
slice timing differences),2,3,11,12 causes alterations of non-
neural origin in DMN FC in healthy adults. We tested this
hypothesis using both simulations (where the ground truth is
known and can be modulated) as well as experimental data.
The latter part was achieved by obtaining connectivity
differences between HRF-variability-affected data (i.e., hemo-
dynamic deconvolution not performed) and HRF-variability-
reduced data (i.e., deconvolution performed). When FC is
estimated in HRF-deconvolved data, the inferences are based
on latent neural variables. These variables, much like in
dynamic causal modeling (DCM),13 are likely to reflect only
neural activity and hence will not be confounded by non-
neural factors driving HRF variability. Subsequently, we iden-
tified the subset of those connections whose FC estimates
obtained in the BOLD and latent neural space were signifi-
cantly different. We then associated HRF differences between
the corresponding pairs of regions with the FC alterations in
the paths connecting them. Such connections represent the
negative effect of HRF variability on FC analysis.

HRF is chiefly characterized by 3 parameters2,3 (Figure
1): (1) response height (RH), (2) full-width at half-max
(FWHM), and (3) time-to-peak (TTP). Recent works show
that altered RH, FWHM, and TTP indicate differing metabo-
lism and microvasculature among others.14 Let us consider
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the impact of HRF variability on FC analysis. We illustrate 2
possibilities using an example (Figure 2): (1) there could be
true high correlation between latent neural signals, but
BOLD fMRI time series could show low correlation owing
to different TTP delays of the two HRFs, and (2) there could
be low correlation between latent neural signals, but BOLD
fMRI time series could show high correlation caused by dif-
ferent TTP delays of the two HRFs. The former leads to
false-negatives whereas the latter leads to false-positives in
traditional fMRI FC analyses that ignores HRF variability.
Similar to the example, we sought to find false-negative and
false-positive connectivities arising from traditional FC anal-
ysis, which ignores HRF variability. Our hypothesis could
then be stated that, owing to HRF variability, data without
deconvolution would potentially show misleading connectiv-
ity differences (both false-positives and false-negatives) as
compared to data with deconvolution.

It should be noted that we do not have access to
ground-truth HRFs across the brain in experimental data.
With current technologies, it is difficult to obtain true
HRFs at every voxel in the brain. Region-specific HRFs
used in this work are an estimate, obtained in a data-driven
way based on biological constraints and mathematical
concepts. Hence, we do not take the leap of naming
the identified connectivity differences between raw and
deconvolved fMRI data as false-positives or false-
negatives; rather we call them pseudo-positives and
pseudo-negatives, respectively. Nonetheless, we expect our
simulation results, based on known ground truths, to give
us more confidence about the type I and type II errors
introduced in experimental FC by HRF variability.

The next section presents the methods used to test our
hypothesis including the underlying theory, simulations, data
pre-processing, connectivity analysis, and HRF analysis.

2 | METHODS

2.1 | Theory

To illustrate the analytical relationship between HRF vari-
ability and FC, we first present the theoretical foundations.
Pearson’s correlation is widely used to quantify FC. The con-
cept underlying our hypothesis is that correlations that exist
in latent neuronal data might cease to exist in BOLD fMRI
because of different HRFs (and vice versa). This concept can
be clearly explained through analytical forms as follows.
First, BOLD fMRI is a convolution of latent neuronal time
series and the HRF:

FIGURE 1 Typical hemodynamic response function with its three
parameters. FWHM, full-width at half max

FIGURE 2 Illustrating the effect of HRF variability on connectivity analysis. Using a pair of example time series, we demonstrate that: (A) the
underlying neural signals are highly correlated while the BOLD fMRI time series are not (giving false low correlation when the true neural correlation is
high), leading to pseudo-negatives, which is caused because of different times-to-peak of the HRFs, and (B) the BOLD fMRI time series are highly
correlated whereas the underlying neural signals are not (giving false high correlation when the true neural correlation is low), leading to pseudo-positives.
This is caused because the HRF corresponding to the leading neuronal time series lags the HRF corresponding to the lagging neuronal time series by the
same amount, causing the delays to cancel out and give a high fMRI correlation

RANGAPRAKASH ET AL.
Magnetic Resonance in Medicine | 3



½BOLD fMRI�5½latent neuronal times series� � ½HRF�
1½measurement noise�
or F5L �H1N;

where * is the mathematical convolution operator. Expanding
the convolution gives:

FðkÞ5
X1

m521
Lðk2mÞ HðmÞ1NðkÞ5

X1
m521

LðmÞ Hðk2mÞ1NðkÞ;

(1)

where F(k) is the fMRI time series value at time point k, L
is the latent neural variable, H is the HRF, N is measure-
ment noise, and the summation is over all time points m.
From this equation, it is clear that a delay d in fMRI time
series F would be caused by an equal delay d in HRF H as
follows:

Fðk1dÞ5
X1

m521
LðmÞ Hðk1d2mÞ1Nðk1dÞ: (2)

Similarly, a delay in latent neuronal time series L would
propagate exactly onto the fMRI time series F. This property
owes to the fact that convolution is a linear time-invariant
operation. Therefore, 2 different HRFs result in 2 fMRI time
series with differing delays in relation to the latent neuronal
time series.

Pearson’s correlation is often used to evaluate FC. Given
2 time series x5 [x1, x2,. . ., xT] and y5 [y1, y2,. . ., yT]
(where T is the number of time points), FC is defined as:

FC5

XT

i51
½ðxi2�xÞðyi2�yÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

i51
ðxi2�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

i51
ðyi2�yÞ2

q : (3)

Here, �x and �y are sample means of time series x and y.
Given that Pearson’s correlation is a zero-lag measure, differ-
ent delays in the 2 time series under consideration caused by
different HRFs would mathematically result in different cor-
relation values. Analytically, the resulting correlation
between the 2 fMRI time series x and y would be:

FC5

XT

i51
½ðxi1d12�xÞðyi1d22�yÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

i51
ðxi1d12�xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i51
ðyi1d22�yÞ2

q ; (4)

where fMRI time series x is delayed by d1 because of its
HRF time-to-peak of d1, and time series y is delayed by
d2 because of its HRF time-to-peak of d2. Clearly, the
correlation value obtained with different delays would be
different from the correlation value obtained with same
delays (if d15 d2). Therefore, it is clear from these analyt-
ical expressions that delays in HRFs cause equal amount
of delays in fMRI time series, and different delays in 2
HRFs result in altered correlation value between the
corresponding 2 time series. We explore the implication of

these observations on FC in simulated as well as experi-
mental fMRI data.

2.2 | Simulations

We performed simulations to illustrate the empirical relation-
ship between HRF parameters and FC. Briefly, we simulated
pairs of neural time series with known neural-FC between
them, then simulated pairs of HRFs with known difference
in HRF parameters between them, then convolved them to
obtained pairs of fMRI time series and the fMRI-FC between
them.

This simulation technique was adopted from Desh-
pande et al.15 We first simulated pairs of neural time series
with a known neural-FC. Two time series, x(n) and y(n)
from interacting neuronal populations X and Y, respec-
tively, were generated using a first order vector autoregres-
sive (VAR) model with an absence of lagged relationships
between x(n) and y(n) and a covariance matrix C. The off-
diagonal elements of C, indicating the cross-correlation
between x(n) and y(n), were varied to simulate different
functional connectivity strengths between x(n) and y(n).
As in previous studies,15 we assumed that x(n) and y(n)
correspond to local field potentials (LFP) sampled at 1 ms.
Next, we simulated pairs of HRFs with known difference
in HRF parameters between them, using a commonly used
HRF defined from 2 gamma functions as in statistical para-
metric mapping (SPM) toolbox.16 The HRF pairs were
generated in such a way that they either differed in the
response height (DRH), or the time-to-peak (DTTP) or the
full-width at half-max (DFWHM), to independently assess
the impact of variability in each of them on FC. Next, we
convolved the neural time series with the HRFs and down-
sampled TR*1000 times to obtain the corresponding fMRI
time series pairs, x0(n) and y0(n). This procedure follows
from the currently accepted relationship between LFPs and
fMRI.17,18 The correlation between them was computed to
obtain their fMRI-FC (FCfMRI). The percentage difference
(denoted as DFC) between neural-FC (FCneural) and fMRI-
FC (DFC is the error because of HRF variability) was com-
puted as follows.

DFC5
jFCneural2FCfMRI j

jFCneuralj 31005
jFCDC2FCNDCj

jFCDCj 3100:

(5)

In the experimental data described later, we denote
neural-FC as FCDC and fMRI-FC as FCNDC, with DC and
NDC referring to deconvolved and non-deconvolved data
respectively, consistent with the notion that deconvolution of
fMRI time series provides latent neural time series.

DFC was compared with the difference in HRF parame-
ters (DRH, DTTP, and DFWHM), separately, to obtain
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graphs depicting the relationship between HRF variability
and error in FC. The difference in HRF parameters were
obtained as follows.

DRH5
jRH12RH2j

ðRH11RH2Þ=23100%; (6)

DTTP5jTTP12TTP2j s; and (7)

DFWHM5jFWHM12FWHM2j s; (8)

where the subscripts 1 and 2 correspond to the 2 regions
under consideration for which the FC was computed. It must
be noted that all the entities in Eqns. (5-9) are absolute val-
ues. We varied the value of the off-diagonal elements of C
(neural-FC) from 21 to 1 in steps of 0.25, to obtain the
impact of HRF variability at different FC strengths. We var-
ied DRH from 0% to 100% (i.e., percentage change in RH)
in steps of 0.25%, varied DTTP from 0–4 s and DFWHM
from 0–1 s, both in steps of 0.25 s. The absolute value of
TTP ranged from 2.5–6.5 s, and that of FWHM ranged from
1–2 s. These values were directly taken from biologically
meaningful lower and upper bounds of these parameters in
healthy individuals as presented in Handwerker et al.2 Addi-
tionally, we varied the TR from 0.5–2 in steps of 0.5. The
simulation was iterated over 10,000 realizations of x(n), y(n),
x0(n), and y0(n). Additional simulations were performed to
demonstrate the construct validity of the deconvolution
technique. Corresponding details can be obtained from the
Supporting Information (section S1).

2.3 | Resting-state fMRI data

Forty-seven healthy young adults were recruited for the
study. Participants were scanned in a 7T MAGNETOM
scanner (Siemens Healthcare, Erlangen, Germany) using
T�
2-weighted multiband EPI sequence19 in resting-state (par-

ticipants were asked to keep their eyes open and not think of
anything specific), with TR5 1000 ms, TE5 20 ms, flip
angle5 708, multiband factor5 2, voxel size5 23 23
2.4mm3, acquisition matrix5 963 96, number of slices5
45 and 660 volumes (11min), with whole-brain coverage.
A 32-channel head coil (Nova Medical) was used. The par-
ticipants provided informed consent and all procedures were
approved by the Auburn University Institutional Review
Board (IRB).

2.4 | fMRI data pre-processing

Standard pre-processing of resting-state fMRI data was per-
formed (slice timing correction with consideration given to the
fact that the data was acquired using a multiband sequence,
realignment and unwrap, co-registering to anatomical image,
de-spiking, normalization to MNI space, spatial smoothing
using an 8mm Gaussian kernel, regressing out nuisance

covariates (6 head motion parameters, Legendre polynomials
of orders up to 2nd, top 5 principle components from subject
specific white matter [WM] signal and cerebrospinal fluid
[CSF] signal), and band-pass filtering [0.008–0.1Hz]). Pre-
processing was performed on the MATLAB R2013a platform
(The MathWorks, Natick, MA) using Statistical Parametric
Mapping (SPM12).16

To extract the default mode network (DMN) regions of
interest (ROIs), we used a popular template provided by
Power et al.,20 which consisted of 58 DMN ROIs (see Sup-
porting Information Table S2 for details). Mean fMRI time
series were then obtained from each ROI. The time series
data were then subjected to 2 separate pipelines, one with no
further pre-processing (contaminated by HRF variability),
and another with blind hemodynamic deconvolution (HRF
variability largely minimized).

With deconvolution, we obtained latent neuronal varia-
bles using a recently reported method.21 The method also
provided the 3 HRF parameters (RH, TTP, and FWHM).
This deconvolution is considered blind because only 1 vari-
able is known (fMRI time series), and from it one estimates
both the latent neural time series and the HRF. We used the
method proposed by Wu et al.,21 which has gained increas-
ing popularity and acceptance owing to its interpretability,
robustness, simplicity, validity, and an increasing awareness
on the importance of deconvolution. Many recent works
have used this method.5,22–29 Briefly, the method relies on
modeling resting-state fMRI data using point processes as
event-related time series with randomly occurring events.30,31

A temporal mask with frame-wise displacement (FD) <0.3
was added to avoid pseudo point process events induced by
motion artifacts.30 The HRF was then estimated using Wie-
ner deconvolution. Simulations demonstrating the construct
validity of the adopted deconvolution technique are pre-
sented in the Supporting Information (section S1). The
deconvolution code (on MATLAB platform) was created by
Wu et al.21 and is available for download.32 The HRF param-
eters obtained have been made freely and publicly avail-
able.33 All data analysis after pre-processing was performed
on the MATLAB R2014a platform.

2.5 | Connectivity analysis

Time series from 58 DMN regions were obtained in the pre-
vious step with data from 2 pipelines: (1) non-deconvolved
(NDC) data (HRF-variability-ignored), and (2) deconvolved
(DC) data (HRF-variability-reduced). With NDC, FC was
evaluated between all pairs of regions to obtain 583 58
connectivity matrix (FCNDC) for every participant. Like in
most studies, z-scored Pearson’s correlation coefficient was
used to evaluate FC.

Similar procedure was followed with DC data to obtain a
583 58 FCDC matrix per participant. The FCNDC and FCDC
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connectivity data have been made publicly available.33

Because the difference between FCNDC and FCDC is the
deconvolution step and hence the corresponding effect of
HRF variability, we sought to identify significant group
differences between them. We used a 2-tailed paired t-test
to find significant group differences between NDC and
DC connectivity matrices (P< 0.05, Bonferroni corrected).
Paired test was chosen because we were looking at within-
subject variability (i.e., connectivities altered in the same
participant because of HRF variability), because NDC and
DC data are essentially from the same participants. The
identified significant differences were then used in further
processing.

2.6 | HRF analysis

Deconvolution provided the estimated HRF for each ROI in
each participant. The HRF for each ROI was characterized
by 3 parameters: response height (RH), full-width at half-
wax (FWHM) and time-to-peak (TTP), as illustrated earlier.
That is, we obtained a 583 1 matrix per participant for RH
(HRFRH), as also for FWHM (HRFFWHM) and TTP
(HRFTTP). Then, significant differences in HRF parameters
were obtained between all 58 pairs of regions. HRFRH for all
participants was taken (583 47 matrix) and a P-value of sep-
aration was obtained between every pair of ROIs. This would
provide the statistical separation in HRFRH between every
pair of ROIs (similar with HRFFWHM and HRFTTP). We per-
formed 2-sided paired t-test between HRF parameters of all
pairs of brain regions (P< 0.05, Bonferroni corrected). Like
with connectivity, paired test was chosen.

Tests for statistical significance were performed sepa-
rately on each of the 3 parameters to obtain group-level
ROI-specific differences in HRF parameters. To be con-
servative, an intersection of the differences in the 3 param-
eters was taken to finally obtain a 583 58 binary matrix of
significant HRF differences. This was then combined with
significant connectivity differences obtained in the previ-
ous step (i.e., found a common matrix of significance by
overlapping the 2) to obtain the following final differences
of interest: (1) pseudo-negatives (true effects potentially
corrupted and diminished by HRF variability): DC>NDC
overlapped with (intersection) HRF differences, and (2)
pseudo-positives (potentially untrue effects arising because
of HRF variability): NDC>DC overlapped with HRF
differences. These 2 observations enabled us to test our
hypothesis.

For the significant connections identified with the above
procedure, as well as for the entire data, we probe the magni-
tude of change observed in FC and the corresponding change
in HRF parameters. We present and discuss the summary sta-
tistics and range of values taken by the percentage FC differ-
ence between NDC and DC (DFC as in Eq. (5)) as well as

the difference in HRF parameters (DRH, DTTP, and
DFWHM as in Eqs. (6–8)).

2.7 | Follow-up HRF analysis

As a follow-up analysis, we probed deeper into the magni-
tude of difference in connectivity between deconvolved and
non-deconvolved data. The goal was to derive quantitative
relationships between the amount of HRF variability and the
amount of its impact on connectivity modeling, which could
be useful for guiding future fMRI FC studies.

Specifically, we derived the relationship between experi-
mental DFC and the percentage of connections (PC) with at
least the corresponding DFC. To perform this computation,
we considered all ROIs and all connections without any
exclusions. Given that we had 58 ROIs and 47 subjects, our
583 583 47 DFC matrix contained Q5 155,382 connec-
tions/paths excluding the diagonal elements. PC(n) was com-
puted as the percentage of these Q connections/paths that
had a DFC� n.

PCðnÞ5 100
Q

XQ

i51

X
DFC�n

1; (9)

where i corresponds to the ith among Q connections/paths. In
summary, DFC was an estimated measure of the impact of
HRF variability on FC (as in Eq. (5)), whereas PC was a
measure of the percentage of all connections affected by that
magnitude of HRF variability (or more). Examples from
findings in the Results section would illustrate these concepts
lucidly.

3 | RESULTS

3.1 | Simulation results

We performed simulations to empirically assess the percent-
age change in FC (DFC) caused by the difference in HRF
parameters between the corresponding 2 regions (i.e., DRH,
DTTP, and DFWHM) across a range of biologically plausi-
ble values of these measures. Here, we present the graphs for
DFC versus DRH (Figure 3A), DFC versus DTTP (Figure
3B), DFC versus DFWHM (Figure 3C), and DFC versus
absolute neural-FC (Figure 3D). Because we used experi-
mental data with TR5 1, plots in Figure 3 have been com-
puted with TR5 1 (see Supporting Information Figure S1
for similar plots across all TRs). DFC and DRH correspond
to the percentage change in them, whereas DTTP and
DFWHM are in seconds. With the case of identical HRFs
(DRH5DTTP5 DFWHM5 0), DFC was insignificant
(P5 0.9999, mean6SD5 102156 0.006), which validates
our deconvolution approach in this regard. Within the accept-
able physiological range of variation in the HRF parameters
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presented here,2 simulations showed a nearly linear positive
relationship between changes in FC and HRF parameters,
with RH and TTP causing up to 50% change in FC. FWHM
had a smaller impact of up to 5%. Additionally, the largest
impact on FC was for weaker connection strengths (up to
170% change), and the impact reduced to as low as 24% for
the strongest connections (that is still a considerable error).
We found that DFC was not significantly different across
TRs for specific alterations of HRF parameters, except with
FWHM at 1 s (Supporting Information Figure S1C). How-
ever, when DFC across all possible alterations of HRF
parameters were considered, there was significant increase in
DFC with TR (P5 10236, F5 56.61), with DFC5 36.16
8.9 for TR5 0.5 and DFC5 40.26 9.8 for TR5 2, implying
that poorer temporal resolution worsens the impact of HRF var-
iability on FC estimates (see the Supporting Information [sec-
tion S2] for the effect of TR on FC-HRF relationship). In
summary, simulations revealed the landscape and limits of the
magnitude of the impact of HRF variability on our ability to
estimate FC accurately at the neural level.

The deconvolution technique’s original paper21 has pre-
sented several simulations illustrating the validity of the tech-
nique. Here, we provide 2 sanity checks for providing further
validation of the deconvolution procedure. First, a fundamen-
tal claim of deconvolution is if a pair of time series have iden-
tical HRFs, then their correlation would be the same with or
without deconvolution, and the deconvolution approach
should be able to re-identify the correlation between the
underlying neural event time series. Second, if 2 time series
have different HRFs, then the deconvolution approach should
be able to accurately access the true neural correlation, but
analysis without deconvolution would not. Using simple sim-
ulations, we demonstrate the construct validity of the decon-
volution technique based on the above principles. Further
details can be obtained from Supporting Information S1.

3.2 | HRF results

Figure 4 shows the 58 DMN ROIs used in this work (please
refer to Supporting Information Table S1 for the MNI

FIGURE 3 Simulation results for empirical assessment of percentage change in functional connectivity (DFC) between neural and BOLD time series
caused by difference in HRF parameters (DRH,DTTP,DFWHM) between the corresponding 2 time series, across all possible physiologically plausible
values of these HRFmeasures. (A)DFC versusDRH (RH resolution5 0.25%). (B)DFC versusDTTP (TTP resolution5 0.25 s). (C)DFC versus
DFWHM (FWHM resolution5 0.25 s). (D)DFC versus absolute value of neural FC (FC resolution5 0.25). Error bars show 1 SD above and below the
mean. The physiologically plausible lower and upper bounds of HRF parameters were obtained fromHandwerker et al.2 We observed robust and nearly
linear-positive relationship betweenDFC and change in HRF parameters. Up to 50% change in FCwas observable because of either RH or TTP variability.
Smaller FC values were more vulnerable to HRF variability. RH, response height; TTP, time-to-peak; FWHM, full-width at half-max; FC, functional
connectivity
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coordinates and names of these ROIs). Figures 5A and 5B
show the pseudo-negative connections potentially arising from
HRF variability. They were obtained as those connections that
had lower connectivity with the HRF-variability-ignored tradi-
tional fMRI data compared to the HRF-variability-reduced
deconvolved data, along with differences in HRF between the
associated ROIs (detailed statistics available in Supporting
Information Table S2). Figures 5C and 5D show the pseudo-
positive connections, which exhibited higher connectivity in
HRF-variability-ignored data, along with HRF differences
between associated ROIs (detailed statistics available in Sup-
porting Information Table S3). Medial prefrontal, anterior cin-
gulate, and temporal pole showed qualitatively drastic
reduction in connectivity after deconvolution. We repeated the
analysis using spatially non-smoothed fMRI data, and did not
find any significant differences in the HRF maps between the
smoothed and non-smoothed data (for details of the analysis
and discussion of corresponding results with non-smoothed
data, please refer to the Supporting Information [section S4]).
Further, we investigated whether deconvolution could intro-
duce higher frequencies into the deconvolved signal and
whether such spectral differences could drive diverging results
from DC and NDC data. However, we found no significant
difference between the spectral characteristics of the raw
BOLD data and deconvolved data (for details of the analysis
and discussion of corresponding results, please refer to the
Supporting Information [section S5]).

It must be noted that we performed a paired t-test to test
for statistical significance, because we were comparing con-
nectivities of the same individuals with different pre-
processing pipelines. We identified a large number of
pseudo-connectivities even with a conservative family-wise-
error-corrected (Bonferroni) threshold. Instead, using a 2-
sample t-test here (although inappropriate to use in our con-
text), resulted in far less number of significant connections
(just 4 connections at P< 0.05, uncorrected). This observa-
tion deserves further attention.

As an example, Figure 6 shows the connectivity values
for all 47 participants with both pipelines (deconvolved and
non-deconvolved), for 1 of the identified pseudo-positive
connectivity paths (between precuneus and superior frontal
gyrus, corresponding to regions 13 and 46 in Supporting
Information Table S1), whose regions had significantly dif-
ferent RH (P5 23 10220), TTP (P5 10288), and FWHM
(P5 10280). What we observed explains the reason for the
large disparity in the results between the use of a paired t-test
and a 2-sample t-test. At the individual subject level, we
observed that there was a consistent shift in connectivity
value in the same direction, and this trend was highly repro-
ducible for all participants, with NDC values consistently
being higher than DC values (DFC5 15.346 4.85%). For
this reason, the paired t-test returned high statistical signifi-
cance for this path. However, the variability across partici-
pants was notably larger (SDNDC5 0.16, SDDC5 0.15) than
the variability within participants caused by HRF differences
(pairwise difference in FC5 0.066 0.02), which means that
the group mean values might not be significantly different
even if considerable differences were observed at the
individual-subject level. This explains why the 2-sample t-
test returned far less number of significant connectivities. For
this reason, we also did not observe any notable differences
in, say, the default-mode’s functional network structure
between deconvolved and non-deconvolved data when using
a 2 sample t-test, because individual-level differences
because of HRF variability are often buried under larger
inter-subject variability.

Next, we probed deeper into the magnitude of change
observed in FC after deconvolution (DFC), as well as the
summary statistics of the HRF parameters obtained from
deconvolution. These numbers were obtained for 3 cases: (1)
Entire data: all the ROIs and connections, without exclu-
sions; (2) Same as previous case but with outliers removed.
Because the histogram of all these measures resembled a
decaying exponential with a long tail (more about this later),
we discarded outliers to provide a more balanced view of
their central tendencies. Outliers were determined as values
that exceeded 3 scaled median absolute deviations away
from the median. (3) Only for those connections and associ-
ated ROIs that exhibited significant difference between NDC
and DC (plus outliers removed); which was performed to
compare values from significant connections against the
entire connectome obtained in case (1).

Table 1 provides the summary statistics of various meas-
ures for all 3 cases. We observed lower FC after deconvolu-
tion compared to before deconvolution (corrected P< 0.05)
with the entire data as well as significant connections that
corroborates with the observation of more pseudo-positives
than pseudo-negatives in the connectivity results. We found
30.5% mean error and 11.5% median error in FC caused by
HRF variability with the entire data. After discarding outliers
(12.9% of the connections), the mean and median DFC were

FIGURE 4 ROIs of the default mode network provided by Power
et al.20 used in this work (see Supporting Information Table S2 for details
of the template)
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14.7% and 9.6% respectively, which was substantial consid-
ering that the effect sizes we often observe in cognitive, neu-
rologic, and psychiatric neurosciences are of similar or
smaller magnitude.34 Although smaller than the former case,
especially the mean, it must be noted that these outliers
(12.9% in our data), show large percentage change in FC,
exist in any data, and impact any FC analysis performed
using it. It should also be noted that outliers may sometimes
be the connections of interest because network-level disrup-
tions because of pathology or cognitive manipulations are
often seen in a small percentage of all possible connections.
Still, to be conservative, in this study, we focused on the
results obtained after eliminating outliers (henceforth we do
not mention about outlier removal, but it is implied).

Studying the distribution of DFC would provide further
insights not available through summary statistics, especially
because it is non-Gaussian. Figure 7 provides the histogram
of DFC obtained from entire data, along with the mean,
median, and 95% interval after outlier removal. The distribu-
tion resembles a decaying exponential, with the mean of
14.7% being a reasonable estimate of the overall error in FC

(DFC) caused by HRF variability. In the specific example
considered in Figure 6, the mean DFC was 15.34%.

Referring to Table 1, when considering only the signifi-
cant connections (as in Figure 5), DFC was significantly
larger than the case of entire data (P5 10222), with the mean
and median DFC being 17.1% and 11.2%, respectively. This
was expected, given that significant connections were, by
definition, different between DC and NDC. However, the
relatively close error of 14.7% with the entire data (that was
14.6% if significant connections were excluded from entire
data) meant that HRF variability had a widespread impact
even among those connections that were not significantly
different between DC and NDC (with our strict statistical
threshold).

Understandably, the difference in FC because of HRF
variability was more than the difference in RH, and FC was
also more variable and had more outliers, given that FC is
impacted by all 3 HRF parameters. Interestingly, DFC was
larger by 17% with significant connections (compared to
entire data), DTTP by 16%, and DFWHM by 17%, whereas
DRH was not different. This curious observation hints that

FIGURE 5 Pseudo-positive and pseudo-negative connections in the DMN arising fromHRF variability. Thicker connections and lighter color corre-
sponds to higher T-value. Please refer to Supporting Information Table S1 for expansion of abbreviations and information on the ROIs. Pseudo-negatives:
(A) axial view; (B) sagittal view. Pseudo-positives: (C) axial view; (D) sagittal view
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TTP and FWHM, which causes timing errors in the data as
seen in Figure 2, contributed to a greater extent toward sig-
nificant changes in FC than toward non-significant connec-
tions, whereas RH had a uniform impact on significant and
non-significant connections, hinting that variability in TTP/
FWHM might disproportionately affect highly impacted
connections.

Mapping these numbers to the simulation results (as in
Figure 3), the mean6 SD of experimental DRH values (as in
Table 1) corresponded to DFC of 6.396 1.87% (Figure 3A),
DTTP to DFC of 6.376 2.37% (Figure 3B), and DFWHM to
DFC of 2.276 0.48% (Figure 3C). The mean DFC in experi-
mental data (514.7%) was close to the sum of mean values
noted above from the simulated DFCs (515%). We do not
imply that changes RH, TTP, and FWHM share a linear
additive relationship with DFC. We could not test this in the
simulation because it does not permit simultaneous control
over all 3 HRF parameters15 (because RH, TTP, and FWHM
are biophysically related),35 and this is an aspect that may be
investigated in the future.

These findings imply that the combined effect of HRF
parameters on FC in real data is at least as bad as the simula-
tion results, and HRF variability, on average, causes �14.7%
error in the FC data in healthy controls for the scan parame-
ters we have used in a 7T scanner. The HRF parameters as
well as connectivity data have been made publicly avail-
able33 to help researchers replicate these findings.

3.3 | Follow-up HRF results

As a follow-up analysis, we derived quantitative relation-
ships between the amount of HRF variability and the amount
of its impact on FC modeling, which could have practical
use in guiding future fMRI FC studies regarding the impact
of HRF variability. Figure 8A depicts the relationship
between the percentage of connections (PC) affected by
HRF variability and the percent connectivity difference
(DFC) between deconvolved and non-deconvolved data. A
double exponential curve could fit this PC versus DFC graph
with R25 0.9998, which is given by the following equation:

yðxÞ50:75e20:19x10:39e20:04x; where x5DFC and y5PC:
(10)

It is notable that these findings were obtained from the
entire connectivity data, including outliers, without limiting
to only the identified significant connectivities. This graph
shows that, for example, there was at least 50% difference in
the magnitude of connectivity between NDC and DC in
6.5% of the connections, there was at least 25% difference in
the magnitude of connectivity between NDC and DC in
16.2% of the connections, and at least 10% difference
between NDC and DC in 38.5% of the connections. Also,
50% of all the connections had at least 7% connectivity
difference between NDC and DC, and 10% of all the
connections had as much as 37% difference in connectivity.
These findings provide deeper insights into what percentage
of connections are impacted by HRF variability and by what
magnitude.

Given that deconvolution is an estimation procedure (like
most other imaging-based methods), questions could arise
about the quality of the HRF estimation, although the decon-
volution procedure used by us has been widely accepted and
extensively used.5,22–29 For the sake of argument, however,
even if we were to say that our estimated HRFs post decon-
volution were largely inaccurate, it is still undeniable that,
theoretically, the ground-truth HRF varies considerably
across the brain, across individuals, and across disease
groups.2,3 Our findings, in the worst case, at least illustrate
how HRF variability can result in widespread confounds in
FC estimates. To illustrate this point, we picked 25% of all
the connections that exhibited the least difference in the HRF
parameters between the corresponding regions and

FIGURE 6 Individual connectivity estimates of a connectivity path
(the pseudo-positive connectionwith highest T-value taken as an example
here). Connectivities are shown for all 47 subjects, obtainedwith both
deconvolved (DC, HRF-variability-reduced) and non-deconvolved (NDC,
HRF-variability-ignored) data. Black lines are drawn connecting the DC
and NDC values in every subject, illustrating what the paired t-test cap-
tures. These differences show the magnitude of change caused byHRF
variability in each subject, which is the effect of interest in this work. The
same differences are plotted at the bottom part of the figure. In this exam-
ple, we observe that HRF-variability-ignored NDC data displays a shift
fromDC’s true group-average connectivity value by 0.06. However,
because the connectivity values are themselves scattered across subjects
with large variance, a 2-sample t-test between DC and NDC values does
not result in high statistical significance
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performed similar analysis as before to compare DFC and
PC only for these 25% of the connections. This represents a
best-case scenario for FC, wherein the HRF variability is
low. Even in such a scenario, we found that connectivities
derived from deconvolved and non-deconvolved data dif-
fered considerably (Figure 8B). The PC–DFC relationship
was expectedly better; still, we found that there was at least
50% difference in connectivity magnitude between NDC
and DC in 5.8% of the connections, there was at least 25%
difference between NDC and DC connectivities in 14.6% of
the connections, and at least 10% difference between NDC
and DC connectivities in 35.7% of the connections. Ten per-
cent of all the connections had as much as 34% difference in
connectivity. As we can see, even if one were to contend
that the ground-truth HRFs were less variable or if our
deconvolution estimates were considerably noisy, one
would still observe the prominent effect of HRF variability
on FC. As such, ignoring HRF variability in fMRI FC anal-
ysis would invariably cause considerable error in FC
estimates.

4 | DISCUSSION

In this work, we tested the hypothesis that FC in the DMN is
affected by HRF variability, which is (at least in part) non-
neural in origin and hence undesirable. We provided the the-
oretical background on which this hypothesis is based, fol-
lowed by simulations to provide empirical evidence to back
our hypothesis when the ground truth is known. Further, we
found experimental evidence to support our hypothesis. We
found functional connections that were significantly different
in the same participants between HRF-variability-ignored
(NDC) and HRF-variability-reduced (DC) data. Additionally,
HRF parameters were found to be significantly different
between the regions involved in all such connections, there-
fore attributing the connectivity differences to HRF variabili-
ty. These findings have considerable implications for the
interpretability and reliability of FC findings in fMRI studies.
Results imply that HRF variability could lead to the identifi-
cation of false positive and false negative connections, and
resting-state fMRI FC studies that do not account for this

TABLE 1 Summary statistics of various measures for 3 cases

Measure Mean6 SD
Median6 absolute
deviation 95% interval [min, max] % eliminated

(A) Entire data without exclusions

FCNDC 0.3026 0.112 0.2586 0.149 [0.012, 0.847] [0, 0.97] —
FCDC 0.2946 0.110 0.2496 0.146 [0.012, 0.839] [0, 0.96] —
[FCNDC 2 FCDC] 0.0366 0.016 0.0286 0.018 [0.001, 0.117] [0, 0.29] —
DFC (%) 30.546 14.21 11.516 9.10 [0.13, 207.04] [0, 499.37] —
DRH (%) 17.716 4.75 13.036 7.51 [0.21, 72.29] [0, 166.63] —
DTTP (s) 0.9446 0.28 0.5666 0.43 [0.006, 5.384] [0, 6.42] —
DFWHM (s) 0.9486 0.28 0.5756 0.43 [0.007, 5.381] [0, 6.51] —

(B) Entire data with outliers eliminateda

DFC (%) 14.686 3.59 9.596 7.01 [0.35, 53.99] [0, 62.95] 12.90
DRH (%) 14.156 2.61 12.326 6.69 [0.61, 40.69] [0, 48.55] 6.27
DTTP (s) 0.7936 0.17 0.5536 0.41 [0.019, 2.272] [0, 2.83] 3.46
DFWHM (s) 0.7976 0.17 0.5616 0.41 [0.021, 2.288] [0, 2.87] 3.45

(C) Significant connections/ROIsb

FCNDC 0.3566 0.122 0.3126 0.178 [0.017, 0.880] [0, 0.97] 96.79
FCDC 0.3336 0.118 0.2876 0.163 [0.014, 0.870] [0, 0.96] 96.79
[FCNDC 2 FCDC] 0.0466 0.019 0.0366 0.024 [0.002, 0.142] [0, 0.27] 96.79
DFC (%) 17.116 4.25 11.216 8.62 [0.39, 62.55] [0, 74.90] 11.40
DRH (%) 14.096 2.59 12.476 6.84 [0.52, 41.83] [0, 48.69] 6.64
DTTP (s) 0.9186 0.15 0.8796 0.55 [0.035, 2.072] [0, 3.55] 0.00
DFWHM (s) 0.9296 0.15 0.8896 0.54 [0.031, 2.099] [0, 3.48] 0.00

Abbreviations: ROIs, regions of interest.
The measures were functional connectivity (FC) from non-deconvolved data (FCNDC), FC from deconvolved data (FCDC), percentage change in FC as defined in
Eqn. 5 (DFC), percentage change in response height as defined in Eqn. 6 (DRH), change in time-to-peak as defined in Eqn. 7 (DTTP), and change in full-width at
half-maximum as defined in Eqn. 8 (DFWHM). The column “% eliminated” shows the percentage of outliers eliminated in DFC, DRH, DTTP, and DFWHM, and
includes the percentage of connections found to be not significant in FCNDC and FCDC in (C).
aDefined as values exceeding 3 scaled absolute deviations above the median.
bOnly significant connections and their associated ROIs (outliers plus non-significant connections and associated ROIs eliminated).
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variability would need to interpret their findings with
caution.

Simulations results (Figure 3) showed a nearly linear pos-
itive relationship between DFC and difference in HRF
parameters. RH and TTP could independently cause a
change of up to 50% in FC, whereas FWHM could cause
about 5% change. Simulations provide the limits and formal
relationships between the entities being studied here and help
us better understand the experimental results as well as the
possibilities not evident from our experimental data. It is
clear that HRF variability, if ignored, is a considerable con-
found in FC analysis.

Looking into the pseudo-negative and pseudo-positive
connections identified in this work (Figure 5), we found that
most of the affected connections were between different
lobes of the brain. Pseudo-negatives (Figures 5A and 5B)
were predominantly observed in connections between medial
frontal and middle temporal regions. In fact, none of the
altered connection were within the same lobe. Pseudo-
positives (Figures 5C and 5D) were predominantly observed
in connections between parietal and medial frontal regions,
whereas some connections between those regions and middle
temporal regions were also observed. Taken together, this
trend suggests that connections between functionally distinct
and anatomically distant regions are more susceptible to

corruption by HRF variability. This could be attributed to the
fact that the neurochemistry and vasculature between such
distant and distinct regions differ by a larger extent,2,3 lead-
ing to larger differences in HRF (that depends on cerebrovas-
cular reactivity and neurovascular coupling),1 and therefore
larger impact on connectivity.

To better understand this pattern of inter-lobe connectiv-
ities being maximally impacted by HRF variability, we dis-
cuss the underlying neurochemistry in further detail. It is
known that neuromodulators released by GABAergic and
glutamatergic interneurons directly modulate local cerebral
blood flow,36 and hence the HRF.37 Lower gamma-amino-
butyric-acid (GABA) concentration results in quicker, taller,
and narrower HRF.38 Glutamate acts on N-methyl-D-
aspartate (NMDA) receptors causing dilation of blood ves-
sels,39 hence influencing the HRF. Serotonin, a vasoconstric-
tor that provides blood–brain barrier permeability, modulates
neurovascular coupling, and hence the HRF.40 These neuro-
chemical processes are known to vary across the brain, with
larger differences being more likely between distinct and dis-
tant regions.2,3 Vasculature is also inconsistent across the
brain, hence the HRF would be different between brain
regions neighboring larger blood vessels compared to smaller
ones.3 However, it is to be noted that this is a simplistic
explanation of much complex underlying neurochemical and
neurovascular phenomena. Therefore, for a more accurate
and complete picture, we refer the readers to Hillman.41 It is
also noteworthy that a recent study by Murphy et al.42 dem-
onstrated that resting-state connectivity obtained from fMRI
and that from calcium imaging significantly differ in many
brain regions, and they hypothesize that such differences
could in-part be explained by the regional variability of the
HRF. Our results provide credence to this view.

Another interesting observation was that the number of
pseudo-positives were more than the number of pseudo-
negatives by a substantial margin. Although we reported
only the results obtained with a conservative statistical
threshold (P< 0.05, Bonferroni corrected), we observed that
this trend holds true even with other more liberal statistical
thresholds (tested up to P< 0.05 uncorrected). In brain imag-
ing, pseudo-positives are more undesirable than pseudo-
negatives, because, in most cases, reporting a connection that
does not exist is more detrimental to the conclusions than a
true connection that was not identified. Hence, more caution
must be exercised, as HRF variability predominantly seems
to cause more pseudo-positives.

We observed that the impact of HRF variability on FC
often gets buried in the larger inter-subject variability of con-
nectivity (Figure 6). However, this must not be misunder-
stood to mean that HRF variability is not a concern,
especially after observing the results for percentage error in
connectivity (DFC). HRF variability could have detrimental
effects when comparing participants from different groups,

FIGURE 7 The histogram of percentage connectivity error (DFC),
obtained from the entire connectivity data (after excluding outliers).
Specifically, it shows the plot of the number of connections corresponding
to the various range of values of percentage connectivity difference
between deconvolved (DC) and non-deconvolved (NDC) data (DFC), as
defined in Eq. 5. Because our data had 58 ROIs, there were a total of
1653 connections. Outliers, defined as values exceeding 3 scaledmedian
absolute deviations above the median, were excluded, which brought the
range ofDFC to [0, 63%]. Note that the distribution ofDFCwould have
had a much longer tail if outliers were included. The histogramwas
divided into 100 bins, hence the value at each bin (no. of connections) cor-
responded to a range of 0.63%. The red bar shows the median connectivity
error of 9.6% caused byHRF variability, whereas the magenta bar shows
the mean of 14.7%. Yellow bars show the 95% interval [0.4, 54] percent
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given that group-level connectivity differences are often of
similar magnitude or even smaller than the error DFC
reported here.34 Across the entire data, the average percent-
age error caused in FC by HRF variability was 30.5%, with
error being 14.7% after outlier elimination. Such large impact
was also observable in the example in Figure 6 (mean DFC
was 15.3%). The distribution of DFC (Figure 7) showed that
the mean error of 14.7% was a reasonable estimate of the
overall error in FC (DFC) caused by HRF variability. For
weaker connection strengths, this number can reach up to
170% (Figure 3D). We observed HRF variability to have a
widespread impact even among those connections not con-
sidered significantly different. Still, these numbers did not
correspond to the worst case because they were obtained
from data with outliers removed. The outliers (12.9% in our
data), corresponding to large percentage changes in FC, exist
in any data and likely impact any FC analysis performed
using it. If outliers were included, we observed average con-
nectivity error of 30.5%; however, to be conservative, we
chose to focus on results after outlier elimination in this
study even though it is conceivable that outliers may be con-
nections of interest in certain scenarios. These findings imply
that the combined effect of HRF parameters on FC in experi-
mental data is at least as worse as the simulation results, and
HRF variability, on average, causes �14.7% error in the FC
data in healthy controls for the scan parameters we have
used in a 7T scanner. It is not possible to unbundle the
effects of each HRF parameter on DFC, because, in experi-
mental data, DFC has contributions from a variable mix of
all 3 HRF parameters. It is important to acknowledge that an
error of the order of 15% in connectivity estimates is suffi-
cient to cause a large impact on statistical inferences, net-
work structure, graph analysis, machine learning models, and

any other derived measure such as behavioral associations.
Even in psychiatric and neurologic disorders, aberrant
changes in connectivity values are often of this order or
smaller.34

To supplement these observations, we fit a double expo-
nential curve (Figure 8) that quantifies the relationship
between HRF variability and its resultant impact on FC using
experimental data. Among several examples provided in the
previous section, 2 examples that stood out were that one-
third of all the connectivities changed by over 10% after
deconvolution, and every tenth connection changed by as
much as one-third after deconvolution. Even if one were to
question the validity of our deconvolution approach and
argue that the ground-truth HRF would be less variable than
our estimated HRFs, our findings from the “bottom 25%”
analysis suggests that comparably strong effects persist even
if one were to hypothesize less variable and “better quality”
unknown ground-truth HRFs. In view of this, we argue that
the conclusions we have drawn in this study are robustly
applicable to the study of FC using resting-state BOLD
fMRI. Given that the effect sizes we often observe with
fMRI are relatively small, these numbers, which are by no
means ignorable, illustrate the considerable impact that
deconvolution has on BOLD fMRI data.

While interpreting these numbers, it must be acknowl-
edged that our analysis was limited to the DMN, was in a
homogenous healthy adult cohort, and data was obtained in a
7T scanner. HRF variability would be higher across the
entire brain compared to the DMN only, would be higher in
a disease group or in different age/race/gender groups, and
would be higher at poorer sampling rates or smaller field
strengths.43 It is noteworthy that pathological populations are
likely to have a wider physiologically plausible range of

FIGURE 8 Quantitative relationship between the amount of HRF variability and the amount of its impact on functional connectivity modeling. (A)
Relationship between the percentage of connections (PC) affected byHRF variability and the percent connectivity difference (DFC) between deconvolved
and non-deconvolved data; shows original data as well as double exponential curve fit (R25 0.9998). The graph shows, for example, that there was at least
10% connectivity difference in one-third of all connections, and 10% of all connections had asmuch as one-third difference in connectivity value. (B) The
same curve fit as in the previous case (in red), along with the curve fit obtained by only 25% of the connections that exhibited least difference in HRF (in
purple). This represents a conservative scenario in which the HRF variability is less, yet considerably large number of connections were impacted. Notably
this was obtained from entire dataset, not just from significant differences
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HRF parameters because of neurochemical and vascular alter-
ations, and hence, likely larger confounds in FC because of
HRF variability. We posit that the mean connectivity error or
DFC would be much higher in such cases. In view of this, we
feel that the readers should consider the worst-case impact of
HRF variability to be likely worse than our results. We invite
researchers to perform similar studies under different condi-
tions to help develop a broader understanding of the problem.

An error in connectivity values by as much as 15% in a
best-case scenario demands serious attention. Such large
errors and such shifts in average connectivity values can bias
statistical results when comparing 2 different groups of par-
ticipants. If the shift in connectivity is away from the group
mean of the other group, it could falsely increase statistical
separation between the groups, resulting in increased T-val-
ues, F-values, or any other statistic, leading to the possible
identification of false positives. On the other hand, a shift of
connectivity toward the group mean of the other group could
inadvertently reduce statistical separation between the
groups, resulting in decreased T-values or F-values, leading
to possible false negatives. During group-comparisons, such
phenomena, in the best-case scenario, would alter the T-val-
ues, F-values, P-values, or other statistical metrics, resulting
in biased results. In the worst-case scenario, it would cause
the identification of false connections or result in missed con-
nections. It could have enormous impact while performing
group comparisons in population studies because the effect
sizes often encountered in brain imaging are small. Further,
the effect size of the impact of HRF variability on FC might
be larger in patient populations, given that many of them are
likely to have vascular and/or neurochemical alterations,
more than that observed in a healthy population.

Given these findings, future fMRI studies must exercise
caution while interpreting results obtained from resting-state
FC analysis of non-deconvolved BOLD fMRI data, espe-
cially if they assume a fixed canonical HRF. Although only
a handful to regions showed HRF differences in this work, it
does not imply that HRF variability does not exist elsewhere,
because we used a conservative statistical threshold that
might have ignored smaller effects. Additionally, it has been
recognized that fMRI signals at ultrahigh fields have more
contributions from small vessels,43 because the variability of
HRF is likely less for small vessels at higher field strengths.
Hence, the HRF confound in our data may be less severe
than in data acquired at lower fields, such as 3T. Nonethe-
less, even with our data from a 7T MRI scanner, we show
that the HRF variability is a major cause of error in estimated
functional connectivities. Such errors are expected to be
larger for data obtained at 3T.

Prior works have studied the impact of HRF variability
on modeling the mean of the fMRI time series,2,3,44 whereas
our novelty rests on studying the impact of HRF variability
on modeling FC. We found erroneous connectivities

emerging because of intra-subject HRF variability, which cor-
roborates with the fact that these prior studies found HRF var-
iability across different brain regions within an individual.
Our work is significant given that the impact of HRF variabil-
ity on FC has not been formally established in literature yet,
with the consequence that a large number of FC studies con-
tinue to ignore the confound of HRF variability in their find-
ings. We hope that our study encourages researchers to
overcome this perplexing lack of attention to HRF variability
while estimating resting-state fMRI FC. Literature on fMRI
FC has been increasing exponentially (1435 publications in
2016 alone and 1241 in 2017 up to September), yet an aware-
ness of the confound of HRF variability has not emerged, and
almost all studies ignore HRF variability in their analysis.

The focus of this work was primarily to identify the
impact of HRF variability on FC at the individual-subject
level (or intra-subject variability) in a healthy population.
Intra-group inter-subject variability and inter-group variabili-
ty could be topics of future investigation. Such studies have
begun to emerge with recent papers reporting confounds in
inter-group resting-state FC differences in a cohort of soldiers
with and without PTSD (post-traumatic stress disorder) and
mTBI (mild traumatic brain injury).5,28 Future studies could
also study the effect of HRF variability on FC at the whole-
brain level in the healthy brain, as well as characterize the
impact of HRF variability in specific psychiatric disorders.

Although the HRF is not grounded purely on neural activ-
ity, it is worthwhile to note that it is not useless noise, but an
information-carrying biological measurement.5 HRF estimates
(using fMRI) are not direct biophysical measurements, much
like other derived fMRI measures (e.g., connectivity, activa-
tions), hence some degree of uncertainty (as estimates) is asso-
ciated with them. With this limitation in the background, we
encourage researchers to use hemodynamic deconvolution
during data pre-processing to minimize (even if it may not be
possible to completely eliminate) the impact of HRF variabili-
ty on fMRI connectivity modeling. Our findings are not lim-
ited to the deconvolution technique used in this work, and
researchers could use other established deconvolution
techniques45–48 to likely arrive at similar conclusions. Finally,
it is notable that unlike RH, fMRI temporal resolution signifi-
cantly matters for accurate TTP and FWHM estimation, with
their resolution limited by acquisition repetition time (TR).
With the recent advent of fast fMRI techniques, data can be
acquired with TRs of up to 400 ms compared to a TR of 1 s
used in our study. We recommend future studies focusing on
HRF analysis to acquire data at finer temporal resolution.

5 | CONCLUSIONS

Functional MRI being an indirect measure of neural activity,
non-neural factors must be carefully accounted for while
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interpreting fMRI findings. These non-neural factors express
through variability in HRF across brain regions and subjects,
rendering fMRI findings to be less reliable. Using both simu-
lations (where the ground truth is known) as well as whole-
brain resting-state fMRI from a 7T MRI scanner, we tested
the hypothesis that such HRF variability causes false func-
tional connections to be inferred. We found evidence in sup-
port of our hypothesis. With simulations, we found that RH
and TTP could independently cause a change of up to 50%
in FC, whereas FWHM could cause about 5% change. With
experimental data, we found significantly different FC
between deconvolved and non-deconvolved data, with HRF
parameters also being significantly different between the cor-
responding regions, therefore attributing the altered connec-
tivities to undesirable HRF variability. On average, HRF
variability resulted in an error of 14.7% in FC using a best-
case scenario where outliers are eliminated. Several pseudo-
positive and pseudo-negative connections were found within
the DMN, with more pseudo-positives identified. Pseudo-
positives are more detrimental to fMRI analysis than pseudo-
negatives. In addition, most of the connections were between
different lobes, owing to the fact that the underlying neuro-
chemistry and vascular structure are more heterogeneous
across distant and distinct regions. We showed that even a
less noisy and less variable HRF could lead to considerable
confounds in FC estimates. We conclude that HRF variabili-
ty could cause potentially false functional connections to be
identified in the brain. To the best of our knowledge, this is
the first systematic study on the impact of HRF variability
on resting-state FC in healthy individuals. These findings
have enormous implications in the analysis and interpretation
of fMRI data. FC findings from non-deconvolved data must
be interpreted with caution. Researchers are encouraged to
perform hemodynamic deconvolution during pre-processing
to minimize HRF variability. The deconvolution code and all
data associated with this article are made publicly avail-
able.34 In the future, we plan to publish a user-interface-
based toolbox to perform deconvolution.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the
online version of this article.

FIGURE S1 Simulation results for empirical assessment of
percentage change in functional connectivity (DFC)
between neural and BOLD time series caused by difference
in HRF parameters (DRH, DTTP, DFWHM) between the
corresponding 2 time series, across all possible physiologi-
cally plausible values of these HRF measures. The results
are presented for 4 different sampling rate (TR) values:
0.5, 1, 1.5, and 2 s. A similar figure in the main document
(Figure 3) presented results only for TR5 1 s. (A) DFC
versus DRH (RH resolution5 0.25%). (B) DFC versus
DTTP (TTP resolution5 0.25s). (C) DFC versus DFWHM
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(FWHM resolution5 0.25 s). (D) DFC versus absolute
value of neural FC (FC resolution5 0.25). Error bars show
1 SD above and below the mean. Figure-S1a does not
show error bars because the error bars would mask the
mean curve if used; nonetheless, the SDs are nearly identi-
cal to the ones visible in Figure 3A. The physiologically
plausible lower and upper bounds of HRF parameters were
obtained from Handwerker et al.2 There was no significant
impact of TR, except with FWHM at 1 s (corrected
P< 0.05). We observed robust and nearly linear positive
relationship between DFC and change in HRF parameters.
Up to 50% change in FC was observable because of either
RH or TTP variability. Also smaller FC values were more
vulnerable to HRF variability. RH, response height; TTP,
time-to-peak; FWHM, full-width at half-max; FC, func-
tional connectivity; TR, repetition time
FIGURE S2 Comparing the frequency spectra (power spec-
tral density) of deconvolved and non-deconvolved data,
obtained from the entire data set. (A) Mean spectra: we
noticed them to be nearly overlapping. (B) Spectra with SDs,
along with the zoomed inlet showing the location of 220 dB
upper cut-off power (100 times attenuation with respect to
the peak). We can observe that the SDs were large compared
to mean difference at that point, which is why they were not
significant (P> 0.05). The two spectra were found to not
differ

TABLE S1 The 58 ROIs of the default mode network
used in this work, which was adopted from Power et al.21
The MNI coordinates of each ROI are provided, along
with ROI name obtained from Talairach Daemon (http://
www.talairach.org/daemon.html). Each ROI was defined as
a sphere of radius 5mm around the centroid of each ROI.
Averaged time series obtained from all voxels in each ROI
were used for further analysis
TABLE S2 Significant connections (P< 0.05, Bonferroni
corrected) with functional connectivity being higher with
deconvolved data compared to non-deconvolved data
(pseudo negatives). The MNI coordinates and names of the
corresponding ROIs can be obtained from Table S1
TABLE S3 Significant connections (P< 0.05, Bonferroni
corrected) with functional connectivity being higher with
non-deconvolved data compared to deconvolved data
(pseudo-positives). The MNI coordinates and names of the
corresponding ROIs can be obtained from Table S1
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