82 research outputs found

    MODULAÇÃO DA CAMADA LIMITE SUPERFICIAL NA AMAZÔNIA POR MOVIMENTOS DE BAIXA FREQUÊNCIA

    Get PDF
    We investigate possible effects of modulation of the surface layer over Amazonian forest by motions that occur at time scales longer than the usual turbulent time scales (referred to as “low-frequency motions”). We present empirical evidence of their occurrence, possible influences on the turbulence structure in the surface layer and its effects on deviations of Monin-Obukhov Similarity theory predictions. To parameterize these effects, we estimate an ‘outer layer’ ‘fluctuating’ friction velocity (v*) as proposed by McNaughton (2006) to represent the additional energy transported down from the variable motions of the outer layer to the surface layer and study how frequently they could be significantly affecting the structure of surface layer. Based on analyses of scale variability of variances and covariances and relations with the parameterized v*, we propose that the relation between v* and u* could be used as an indicator of the strength of low frequency modulations in the region. We found that the ratio v*/u* is above 2 for roughly 50% of the unstable runs analyzed and it is likely that in these cases the surface layer is different from the textbook descriptions.Investigamos possíveis efeitos de modulação da camada superficial sobre a floresta Amazônica por movimentos que ocorrem em escalas de tempo mais longas do que as escalas de tempo turbulentas usuais (referidos aqui como “movimentos de baixa-frequência”). São apresentadas evidências empíricas de sua ocorrência, possível influência na estrutura da turbulência na camada superficial e seus efeitos induzindo desvios nas relações da teoria da similaridade de Monin-Obukhov. Para parametrizar estes efeitos, estimamos uma escala de velocidade de fricção “flutuante” (v*) proposta por McNaughton (2006), para representar o transporte adicional de momento pela variabilidade da camada externa (‘outer layer’) transferido para a camada superficial, e estudamos o quão frequente estes movimentos podem afetar significativamente a estrutura da camada superficial. Baseando-nos em análises da variabilidade por escala das variâncias e covariâncias e relações com v*, propomos que a relação entre v* e u* pode ser usada como um indicador da importância das modulações de baixa-frequência na região. Os resultados mostram que a razão v*/u* é maior que 2 para aproximadamente 50% dos dados em condições instáveis analisados, e é provável que, nestes casos, a camada superficial é diferente das descrições clássicas

    A comparison of the spatial heterogeneities of surface fluxes simulated by INLAND model with observations at a valley and a nearby plateau stations in Central Amazon Forest

    Get PDF
    An improved version of the Integrated Land Surface Model (INLAND), incorporating the physical, ecological and hydrological parameters and processes pertaining to two subclasses of tropical forest in the central Amazon basin, a poorly drained flat plateau and a well-drained adjacent broad valley, is used to simulate the hydrological, energy and CO2 fluxes. The model is forced with observed meteorological data. The experimental output data from the model runs are compared with observational data at the two locations. The seasonal variabilities of water table depth at the valley site and the soil moisture at the plateau site are satisfactorily simulated. The two locations exhibit large differences in energy, carbon and water fluxes, both in the simulations and in the observations. Results validate the INLAND model and indicate the need for incorporating sub-grid scale variability in the relief, soil type and vegetation type attributes to improve the representation of the Amazonian ecosystems in land-surface models.This work was supported by the São Paulo Research Foundation (FAPESP) Grant Number 2017/22269-2. The first author was funded by The National Council of Scientific and Technological Development (CNPq) and National Coordination for High Level Education and Training (CAPES). The second author was supported by CNPq Grant Number 314780/2020-3. The fourth author was supported by Grant Number 2308.019802/2018-7, PVNS (National Senior Visiting Professor) program by CAPES in Brazil and CNPq in Brazil for research Grant number PQ 306595/2013-3.Peer ReviewedPostprint (published version

    Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

    Get PDF
    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs

    Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy

    Get PDF
    Biomass burning activities emit high concentrations of aerosol particles to the atmosphere. Such particles can interact with solar radiation, decreasing the amount of light reaching the surface and increasing the fraction of diffuse radiation through scattering processes, and thus has implications for photosynthesis within plant canopies. This work reports results from photosynthetically active radiation (PAR) and aerosol optical depth (AOD) measurements conducted simultaneously at Reserva Biológica do Jaru (Rondonia State, Brazil) during LBA/SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia/ Smoke, Aerosols, Clouds, Rainfall, and Climate) and RaCCI (Radiation, Cloud, and Climate Interactions in the Amazon during the Dry-to-Wet Transition Season) field experiments from 15 September to 15 November 2002. AOD values were retrieved from an AERONET (Aerosol Robotic Network) radiometer, MODIS (Moderate Resolution Spectroradiometer) and a portable sunphotometer from the United States Department of Agriculture - Forest Service. Significant reduction of PAR irradiance at the top of the canopy was observed due to the smoke aerosol particles layer. This radiation reduction affected turbulent fluxes of sensible and latent heats. The increase of AOD also enhanced the transmission of PAR inside the canopy. As a consequence, the availability of diffuse radiation was enhanced due to light scattering by the aerosol particles. A complex relationship was identified between light availability inside the canopy and net ecosystem exchange (NEE). The results showed that the increase of aerosol optical depth corresponded to an increase of CO2 uptake by the vegetation. However, for even higher AOD values, the corresponding NEE was lower than for intermediate values. As expected, water vapor pressure deficit (VPD), retrieved at 28 m height inside the canopy, can also affect photosynthesis. A decrease in NEE was observed as VPD increased. Further studies are needed to better understand these findings, which were reported for the first time for the Amazon region under smoky conditions

    Methods to Evaluate Land-Atmosphere Exchanges in Amazonia Based on Satellite Imagery and Ground Measurements

    Get PDF
    During the last three decades, intensive campaigns and experiments have been conducted for acquiring micrometeorological data in the Amazonian ecosystems, which has increased our understanding of the variation, especially seasonally, of the total energy available for the atmospheric heating process by the surface, evapotranspiration and carbon exchanges. However, the measurements obtained by such experiments generally cover small areas and are not representative of the spatial variability of these processes. This chapter aims to discuss several algorithms developed to estimate surface energy and carbon fluxes combining satellite data and micrometeorological observations, highlighting the potentialities and limitations of such models for applications in the Amazon region. We show that the use of these models presents an important role in understanding the spatial and temporal patterns of biophysical surface parameters in a region where most of the information is local. Data generated may be used as inputs in earth system surface models allowing the evaluation of the impact, both in regional as well as global scales, caused by land-use and land-cover changes

    Fechamento do Balanço de Energia em uma Floresta Tropical: Contribuições da troca Turbulenta e Armazenamento de Calor Ecossistema

    Get PDF
    The surface energy balance is rarely closed using the common half-hourly averaging period for turbulent fluxes as eddies of greater characteristic time scales often provide a non-trivial contribution to energy exchange. Here, we briefly discuss previous efforts to improve surfasse energy balance closure of a tropical rainforest ecosystem – the K34 site - and describe how measurements from the GoAmazon campaign can be used to improve our understanding of energy flux and storage in tropical canopies.O balanço de energia da superfície raramente é fechado usando o período médio a cada meia hora comum para fluxos turbulentos como turbilhões de maior tempo característico escalas costumam oferecer uma contribuição não-trivial para troca de energia. Aqui, discutimos brevemente os esforços anteriores para melhorar o fechamento do balanço de energia da superfície de uma floresta tropical ecossistema tropical - o site K34 - e descrever como mediçõesda campanha GoAmazon pode ser usado para melhorar a nossa compreensão do fluxo de energia e armazenamento em copas tropicais

    Ecological research in the Large Scale Biosphere Atmosphere Experiment in Amazonia: A discussion of early results

    Get PDF
    The Large-scale Biosphere–Atmosphere Experiment in Amazonia (LBA) is a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA focus on how tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in the Amazon region. Early results from ecological studies within LBA emphasize the variability within the vast Amazon region and the profound effects that land-use and land-cover changes are having on that landscape. The predominant land cover of the Amazon region is evergreen forest; nonetheless, LBA studies have observed strong seasonal patterns in gross primary production, ecosystem respiration, and net ecosystem exchange, as well as phenology and tree growth. The seasonal patterns vary spatially and interannually and evidence suggests that these patterns are driven not only by variations in weather but also by innate biological rhythms of the forest species. Rapid rates of deforestation have marked the forests of the Amazon region over the past three decades. Evidence from ground-based surveys and remote sensing show that substantial areas of forest are being degraded by logging activities and through the collapse of forest edges. Because forest edges and logged forests are susceptible to fire, positive feedback cycles of forest degradation may be initiated by land-use-change events. LBA studies indicate that cleared lands in the Amazon, once released from cultivation or pasture usage, regenerate biomass rapidly. However, the pace of biomass accumulation is dependent upon past land use and the depletion of nutrients by unsustainable land-management practices. The challenge for ongoing research within LBA is to integrate the recognition of diverse patterns and processes into general models for prediction of regional ecosystem function

    Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Nino

    Get PDF
    The tropical carbon balance dominates year-to-year variations in the CO2 exchange with the atmosphere through photosynthesis, respiration and fires. Because of its high correlation with gross primary productivity (GPP), observations of sun-induced fluorescence (SIF) are of great interest. We developed a new remotely sensed SIF product with improved signal-to-noise in the tropics, and use it here to quantify the impact of the 2015/2016 El Nino Amazon drought. We find that SIF was strongly suppressed over areas with anomalously high temperatures and decreased levels of water in the soil. SIF went below its climatological range starting from the end of the 2015 dry season (October) and returned to normal levels by February 2016 when atmospheric conditions returned to normal, but well before the end of anomalously low precipitation that persisted through June 2016. Impacts were not uniform across the Amazon basin, with the eastern part experiencing much larger (10-15%) SIF reductions than the western part of the basin (2-5%). We estimate the integrated loss of GPP relative to eight previous years to be 0.34-0.48 PgC in the three-month period October-November-December 2015. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'

    Amazonia as a carbon source linked to deforestation and climate change

    Get PDF
    Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.</p
    corecore