172 research outputs found

    Genomic Heterogeneity in a Natural Archaeal Population Suggests a Model of tRNA Gene Disruption

    Get PDF
    Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared from a C. subterraneum–dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at least three types of heterogeneity at the tRNAThr(GGU) gene locus in the Caldiarchaeum population. All three involve intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNAThr(GGU), one (tRNAThr-I) contains a single intron, whereas another (tRNAThr-II) contains two introns. Notably, in the clone possessing tRNAThr-II, a 5′ fragment of the tRNAThr-I (tRNAThr-F) gene was observed 1.8-kb upstream of tRNAThr-II. The composite genome contains both tRNAThr-II and tRNAThr-F, although the loci are >500 kb apart. Given that the 1.8-kb sequence flanked by tRNAThr-F and tRNAThr-II is predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic element

    Collateral effect of COVID-19 on orthopedic and trauma surgery

    Get PDF
    Objectives: The purpose of this study was to assess the impact of the COVID-19 pandemic on orthopedic and trauma surgery in private practices and hospitals in Germany. Design: In this cross-sectional study, an online-based anonymous survey was conducted from April 2th to April 16th 2020. Setting: The survey was conducted among 15.0000 of 18.000 orthopedic and trauma surgeons in Germany, both in private practices and hospitals. Participants: All members of the German Society of Orthopedic and Trauma Surgery (DGOU) and the Professional Association for Orthopedic and Trauma Surgery (BVOU). were invited by e-mail to participate in the survey. Main outcome measures: Out of 50 questions 42 were designed to enquire a certain dimension of the pandemic impact and contribute to one of six indices, namely “Preparedness”, “Resources”, “Reduction”, “Informedness”, “Concern”, and “Depletion”. Data was analyzed in multiple stepwise regression, aiming to identify those factors that independently influenced the indices. Results: 858 orthopedic and trauma surgeons participated in the survey throughout Germany. In the multiple regression analysis, being employed at a hospital was identified as an independent positive predictor in the indices for “Preparedness”, “Resources”, and “Informedness” and an independent negative predictor regarding “Depletion”. Self-employment was found to be an independent positive predictor of the financial index “Depletion”. Female surgeons were identified as an independent variable for a higher level of “Concern”. Conclusions: The study confirms a distinct impact of the COVID-19 pandemic on orthopedic and trauma surgery in Germany. The containment measures are largely considered appropriate despite severe financial constraints. A substantial lack of personal protective equipment (PPE) is reported. The multiple regression analysis shows that self-employed surgeons are more affected by this shortage as well as by the financial consequences than surgeons working in hospitals. What are the new findings: The COVID-19 pandemic has a profound impact on orthopedic and trauma surgery as an unrelated specialty. Self-employed surgeons are affected especially by a shortage of PPE and financial consequences. How might it impact on clinical practice in the near future: Political and financial support can now be applied more focused to subgroups in the field of orthopedics and trauma surgery with an increased demand for support. A special emphasis should be set on the support of self-employed surgeons which are a more affected by the shortage of PPE and financial consequences than surgeons working in hospital

    Discovery of permuted and recently split transfer RNAs in Archaea

    Get PDF
    Background: As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another rare type of pre-tRNA, found only in eukaryotic algae, is permuted, where the 3 ’ half is encoded upstream of the 5 ’ half, and must be processed to be functional. Results: Using an improved version of the gene-finding program tRNAscan-SE, comparative analyses and experimental verifications, we have now identified four novel trans-spliced tRNA genes, each in a different species of the Desulfurococcales branch of the Archaea: tRNA Asp(GUC) in Aeropyrum pernix and Thermosphaera aggregans, and tRNA Lys(CUU) in Staphylothermus hellenicus and Staphylothermus marinus. Each of these includes features surprisingly similar to previously studied split tRNAs, yet comparative genomic context analysis and phylogenetic distribution suggest several independent, relatively recent splitting events. Additionally, we identified the first examples of permuted tRNA genes in Archaea: tRNA iMet(CAU) and tRNA Tyr(GUA) in Thermofilum pendens, which appear to be permuted in the same arrangement seen previously in red alga. Conclusions: Our findings illustrate that split tRNAs are sporadically spread across a major branch of the Archaea

    A Model of Proto-Anti-Codon RNA Enzymes Requiring l-Amino Acid Homochirality

    Get PDF
    All living organisms encode the 20 natural amino acid units of polypeptides using a universal scheme of triplet nucleotide “codons”. Disparate features of this codon scheme are potentially informative of early molecular evolution: (i) the absence of any codons for d-amino acids; (ii) the odd combination of alternate codon patterns for some amino acids; (iii) the confinement of synonymous positions to a codon’s third nucleotide; (iv) the use of 20 specific amino acids rather than a number closer to the full coding potential of 64; and (v) the evolutionary relationship of patterns in stop codons to amino acid codons. Here I propose a model for an ancestral proto-anti-codon RNA (pacRNA) auto-aminoacylation system and show that pacRNAs would naturally manifest features of the codon table. I show that pacRNAs could implement all the steps for auto-aminoacylation: amino acid coordination, intermediate activation of the amino acid by the 5′-end of the pacRNA, and 3′-aminoacylation of the pacRNA. The anti-codon cradles of pacRNAs would have been able to recognize and coordinate only a small number of l-amino acids via hydrogen bonding. A need for proper spatial coordination would have limited the number of chargeable amino acids for all anti-codon sequences, in addition to making some anti-codon sequences unsuitable. Thus, the pacRNA model implies that the idiosyncrasies of the anti-codon table and l-amino acid homochirality co-evolved during a single evolutionary period. These results further imply that early life consisted of an aminoacylated RNA world with a richer enzymatic potential than ribonucleotides alone

    Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector

    Get PDF
    Background: The use of RNAi in both basic and translational research often requires expression of multiple siRNAs from the same vector. Methods/Principal Findings: We have developed a novel chicken miR126-based artificial miRNA expression system that can express one, two or three miRNAs from a single cassette in a lentiviral vector. We show that each of the miRNAs expressed from the same lentiviral vector is capable of potent inhibition of reporter gene expression in transient transfection and stable integration assays in chicken fibroblast DF-1 cells. Transduction of Vero cells with lentivirus expressing two or three different anti-influenza miRNAs leads to inhibition of influenza virus production. In addition, the chicken miR126-based expression system effectively inhibits reporter gene expression in human, monkey, dog and mouse cells. These results demonstrate that the flanking regions of a single primary miRNA can support processing of three different stem-loops in a single vector. Conclusions/Significance: This novel design expands the means to express multiple miRNAs from the same vector for potent and effective silencing of target genes and influenza virus.National Institutes of Health (U.S.) (Grant R01AI056267)Cobb-Vantress, inc

    A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans

    Get PDF
    Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans

    Anyone with a Long-Face? Craniofacial Evolutionary Allometry (CREA) in a Family of Short-Faced Mammals, the Felidae

    Get PDF
    Among adults of closely related species, a trend in craniofacial evolutionary allometry (CREA) for larger taxa to be long-faced and smaller ones to have paedomorphic aspects, such as proportionally smaller snouts and larger braincases, has been demonstrated in some mammals and two bird lineages. Nevertheless, whether this may represent a ‘rule’ with few exceptions is still an open question. In this context, Felidae is a particularly interesting family to study because, although its members are short-faced, previous research did suggest relative facial elongation in larger living representatives. Using geometric morphometrics, based on two sets of anatomical landmarks, and traditional morphometrics, for comparing relative lengths of the palate and basicranium, we performed a series of standard and comparative allometric regressions in the Felidae and its two subfamilies. All analyses consistently supported the CREA pattern, with only one minor exception in the geometric morphometric analysis of Pantherinae: the genus Neofelis. With its unusually long canines, Neofelis species seem to have a relatively narrow cranium and long face, despite being smaller than other big cats. In spite of this, overall, our findings strengthen the possibility that the CREA pattern might indeed be a ‘rule’ among mammals, raising questions on the processes behind it and suggesting future directions for its study

    Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories

    Get PDF
    Recent advances in geometric morphometrics provide improved techniques for extraction of biological information from shape and have greatly contributed to the study of ecomorphology and morphological evolution. However, the vertebral column remains an under-studied structure due in part to a concentration on skull and limb research, but most importantly because of the difficulties in analysing the shape of a structure composed of multiple articulating discrete units (i.e. vertebrae). Here, we have applied a variety of geometric morphometric analyses to three-dimensional landmarks collected on 19 presacral vertebrae to investigate the influence of potential ecological and functional drivers, such as size, locomotion and prey size specialisation, on regional morphology of the vertebral column in the mammalian family Felidae. In particular, we have here provided a novel application of a method—phenotypic trajectory analysis (PTA)—that allows for shape analysis of a contiguous sequence of vertebrae as functionally linked osteological structures. Our results showed that ecological factors influence the shape of the vertebral column heterogeneously and that distinct vertebral sections may be under different selection pressures. While anterior presacral vertebrae may either have evolved under stronger phylogenetic constraints or are ecologically conservative, posterior presacral vertebrae, specifically in the post-T10 region, show significant differentiation among ecomorphs. Additionally, our PTA results demonstrated that functional vertebral regions differ among felid ecomorphs mainly in the relative covariation of vertebral shape variables (i.e. direction of trajectories, rather than in trajectory size) and, therefore, that ecological divergence among felid species is reflected by morphological changes in vertebral column shape

    Structure-Function Analysis of Human TYW2 Enzyme Required for the Biosynthesis of a Highly Modified Wybutosine (yW) Base in Phenylalanine-tRNA

    Get PDF
    Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNAPhe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNAPhe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNAPhe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis
    corecore