694 research outputs found

    Conformal Bulk Fields, Dark Energy and Brane Dynamics

    Get PDF
    In the Randall-Sundrum scenario we analyze the dynamics of a spherically symmetric 3-brane when the bulk is filled with matter fields. Considering a global conformal transformation whose factor is the Z2Z_2 symmetric warp we find a new set of exact dynamical solutions for which gravity is bound to the brane. The set corresponds to a certain class of conformal bulk fields. We discuss the geometries which describe the dynamics on the brane of polytropic dark energy.Comment: 12 pages, latex, 2 figures. Talk given by Rui Neves at the Fourth International Conference on Physics Beyond the Standard Model, Beyond the Desert 03, Fundamental Experimental and Theoretical Developments in Particle Physics, Accelerator, Non-Accelerator and Space Approaches, Max Planck Institut f. Kernphysik/MPI Heidelberg, Castle Ringberg, Tegernsee, Germany, 9-14 June 2003. To be published in the Conference Proceedings, Springer-Verlag, Heidelberg, German

    Superradiance by mini black holes with mirror

    Full text link
    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger angular momentum of the black hole. Possibilities of the forming the black-hole bomb at the LHC are discussed.Comment: 20 pages, 2 figures, 7 tables. More discussions. To appear in JHE

    Signatures of Large Extra Dimensions

    Get PDF
    String theory suggests modifications of our spacetime such as extra dimensions and the existence of a mininal length scale. In models with addidional dimensions, the Planck scale can be lowered to values accessible by future colliders. Effective theories which extend beyond the standart-model by including extra dimensions and a minimal length allow computation of observables and can be used to make testable predictions. Expected effects that arise within these models are the production of gravitons and black holes. Furthermore, the Planck-length is a lower bound to the possible resolution of spacetime which might be reached soon.Comment: 8 pages, no figures, Talk presented at the NATO Advanced Study Institute: Structure and Dynamics of Elementary Matter, Kemer, Turkey, 22 Sep - 2 Oct 2003. Proceedings to be published by Kluwer Academic publisher

    Effective AdS/renormalized CFT

    Full text link
    For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a double-trace deformation and spontaneously broken CFT. For the second dual pair, we compute scaling corrections at the UV and IR fixed points of the RG flow triggered by the double-trace deformation. For the last case, we discuss whether our prescription is sensitive to the AdS interior or equivalently, the IR physics of the dual field theory.Comment: 20 pages, 3 figure

    Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes

    Full text link
    A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in arXiv:0907.5107. We formulate the problem in terms of a "spinor-like" first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.Comment: 19 pages, 6 figures, minor typos corrected, 1 page added with a discussion on higher spins, added reference

    Entropy from AdS(3)/CFT(2)

    Full text link
    We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic stress-energy tensor of the dual CFT and confirm that it has the correct form, including the effects of the conformal anomaly. We find that the Fefferman-Graham parametrization also spans a second copy of the AdS space, including a second boundary. For the boundary metrics we consider, the Fefferman-Graham coordinates do not cover the whole AdS space. We propose that the length of the line delimiting the excluded region at a given time can be identified with the entropy of the dual CFT on a background determined by the boundary metric. For Rindler and de Sitter backgrounds our proposal reproduces the expected entropy. For a FRW background it produces a generalization of the Cardy formula that takes into account the vacuum energy related to the expansion.Comment: major revision with several clarifications and corrections, 22 page

    Evidence for F(uzz) Theory

    Full text link
    We show that in the decoupling limit of an F-theory compactification, the internal directions of the seven-branes must wrap a non-commutative four-cycle S. We introduce a general method for obtaining fuzzy geometric spaces via toric geometry, and develop tools for engineering four-dimensional GUT models from this non-commutative setup. We obtain the chiral matter content and Yukawa couplings, and show that the theory has a finite Kaluza-Klein spectrum. The value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points on the internal four-cycle S. This relation puts a non-trivial restriction on the space of gauge theories that can arise as a limit of F-theory. By viewing the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the geometry, we argue that this theory admits a holographic dual description in the large N limit. We also entertain the possibility of constructing string models with large fuzzy extra dimensions, but with a high scale for quantum gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde

    f(R) Gravities, Killing Spinor Equations, "BPS" Domain Walls and Cosmology

    Full text link
    We derive the condition on f(R) gravities that admit Killing spinor equations and construct explicit such examples. The Killing spinor equations can be used to reduce the fourth-order differential equations of motion to the first order for both the domain wall and FLRW cosmological solutions. We obtain exact "BPS" domain walls that describe the smooth Randall-Sundrum II, AdS wormholes and the RG flow from IR to UV. We also obtain exact smooth cosmological solutions that describe the evolution from an inflationary starting point with a larger cosmological constant to an ever-expanding universe with a smaller cosmological constant. In addition, We find exact smooth solutions of pre-big bang models, bouncing or crunching universes. An important feature is that the scalar curvature R of all these metrics is varying rather than a constant. Another intriguing feature is that there are two different f(R) gravities that give rise to the same "BPS" solution. We also study linearized f(R) gravities in (A)dS vacua.Comment: 37 pages, discussion on gravity trapping in RSII modified, typos corrected, further comments and references added; version to appear in JHE

    New AdS solitons and brane worlds with compact extra-dimensions

    Full text link
    We construct new static, asymptotically AdS solutions where the conformal infinity is the product of Minkowski spacetime MnM_n and a sphere SmS^m. Both globally regular, soliton-type solutions and black hole solutions are considered. The black holes can be viewed as natural AdS generalizations of the Schwarzschild black branes in Kaluza-Klein theory. The solitons provide new brane-world models with compact extra-dimensions. Different from the Randall-Sundrum single-brane scenario, a Schwarzschild black hole on the Ricci flat part of these branes does not lead to a naked singularity in the bulk.Comment: 28 pages, 4 figure

    Geometry of open strings ending on backreacting D3-branes

    Full text link
    We investigate open string theory on backreacting D3-branes using a spacetime approach. We study in detail the half-BPS supergravity solutions describing open strings ending on D3-branes, in the near horizon of the D3-branes. We recover quantitatively several non-trivial features of open string physics including the appearance of D3-brane spikes, the polarization of fundamental strings into D5-branes, and the Hanany-Witten effect. Finally we detail the computation of the gravitational potential between two open strings, and contrast it with the holographic computation of Wilson lines. We argue that the D-brane backreaction has a large influence on the low-energy gravity, which may lead to experimental tests for string theory brane-world scenarios.Comment: 64 pages, 20 figure
    corecore