6,385 research outputs found

    Constraints on Sparticle Spectrum in different Supersymmetry Breaking Models

    Full text link
    We derive sum rules for the sparticle masses in different models of supersymmetry breaking. This includes the gravity mediated models (SUGRA models) as well as models in which supersymmetry breaking terms are induced by super-Weyl anomaly (AMSB models). These sum rules can help in distinguishing between these models. In particular we obtain an upper bound on the mass of the lightest neutralino as a function of the gluino mass in SUGRA and AMSB models.Comment: 3 pages, latex, two figures, macros included. Talk presented at IXth International Symposium on Particles, Strings and Cosmology(PASCOS'03), TIFR, MUmbai, India, January 3 - 8, 2003. To appear in the proceeding

    Current and future graphics requirements for LaRC and proposed future graphics system

    Get PDF
    The findings of an investigation to assess the current and future graphics requirements of the LaRC researchers with respect to both hardware and software are presented. A graphics system designed to meet these requirements is proposed

    Gravitational Waves from Warped Spacetime

    Get PDF
    We argue that the RSI model can provide a strong signature in gravitational waves. This signal is a relic stochastic background generated during the cosmological phase transition from an AdS-Schwarschild phase to the RS1 geometry that should occur at a temperature in the TeV range. We estimate the amplitude of the signal in terms of the parameters of the potential stabilizing the radion and show that over much of the parameter region in which the phase transition completes, a signal should be detectable at the planned space interferometer, LISA.Comment: 18 pages, 15 figures; v2: discussion improved, in particular on the justification of the thick wall approximation. 6 figures added. 4 pi factor corrected in perturbativity bound. N-dependence displayed. Conclusions unchanged. JHEP versio

    Influence of deposition parameters on mechanical properties of sputter-deposited Cr2O3 thin films

    Get PDF
    Among the oxides, Cr2O3 exhibits the highest hardness value and a low coefficient of friction. These properties make chromium oxide an excellent coating material for tribological applications. Cr2O3 thin films were deposited by radio-frequency reactive magnetron sputtering at substrate temperature in the range 363-593 K. The hardness and elastic modulus of the films were measured by two complementary nanoindentation techniques to investigate the influences of the substrate temperature and the oxygen content in the sputtering gas. While the continuous stiffness data method provides information throughout the whole film thickness, nanoindentation combined with scanning force microscopy of the residual imprints allows visualization of pileup, cracking, and delamination from the substrate. Hardness values up to 32 GPa were obtained for substrate temperatures exceeding 500 K and oxygen contents between 15% and 25% of the total gas pressure. The films, obtained with these deposition conditions, showed good adhesion to silicon substrate

    Constraints on AdS5AdS_5 Embeddings

    Get PDF
    We show that the embedding of either a static or a time dependent maximally 3-symmetric brane with non-zero spatial curvature kk into a non-compactified AdS5AdS_5 bulk does not yield exponential suppression of the geometry away from the brane. Implications of this result for brane-localized gravity are discussed.Comment: RevTeX, 9 pages (updated version v2, conclusions unchanged after extension to the non-static case

    D-Terms, Unification, and the Higgs Mass

    Full text link
    We study gauge extensions of the MSSM that contain non-decoupling D-terms, which contribute to the Higgs boson mass. These models naturally maintain gauge coupling unification and raise the Higgs mass without fine-tuning. Unification constrains the structure of the gauge extensions, limiting the Higgs mass in these models to roughly less than 150 GeV. The D-terms contribute to the Higgs mass only if the extended gauge symmetry is broken at energies of a few TeV, leading to new heavy gauge bosons in this mass range.Comment: 30+1 pages, 7 figure

    Black Holes Radiate Mainly on the Brane

    Get PDF
    We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.Comment: 11 page

    No-Go Theorem for Horizon-Shielded Self-Tuning Singularities

    Get PDF
    We derive a simple no-go theorem relating to self-tuning solutions to the cosmological constant for observers on a brane, which rely on a singularity in an extra dimension. The theorem shows that it is impossible to shield the singularity from the brane by a horizon, unless the positive energy condition (rho+p >= 0) is violated in the bulk or on the brane. The result holds regardless of the kinds of fields which are introduced in the bulk or on the brane, whether Z_2 symmetry is imposed at the brane, or whether higher derivative terms of the Gauss-Bonnet form are added to the gravitational part of the action. However, the no-go theorem can be evaded if the three-brane has spatial curvature. We discuss explicit realizations of such solutions which have both self-tuning and a horizon shielding the singularity.Comment: 7 pages, 4 figures, revtex; added reference and minor correction

    Brane versus shell cosmologies in Einstein and Einstein-Gauss-Bonnet theories

    Get PDF
    We first illustrate on a simple example how, in existing brane cosmological models, the connection of a 'bulk' region to its mirror image creates matter on the 'brane'. Next, we present a cosmological model with no Z2Z_2 symmetry which is a spherical symmetric 'shell' separating two metrically different 5-dimensional anti-de Sitter regions. We find that our model becomes Friedmannian at late times, like present brane models, but that its early time behaviour is very different: the scale factor grows from a non-zero value at the big bang singularity. We then show how the Israel matching conditions across the membrane (that is either a brane or a shell) have to be modified if more general equations than Einstein's, including a Gauss-Bonnet correction, hold in the bulk, as is likely to be the case in a low energy limit of string theory. We find that the membrane can then no longer be treated in the thin wall approximation. However its microphysics may, in some instances, be simply hidden in a renormalization of Einstein's constant, in which cases Einstein and Gauss-Bonnet membranes are identical.Comment: 15 pages, submitted to Phys. Rev.
    corecore