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Géraldine Servant

Service de Physique Théorique, CEA Saclay,
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1. Introduction

The nature of the theory underlying the electroweak phase transition will hopefully be

resolved within the next five years at the LHC. However, other indirect probes of the weak

scale could supplement these results and provide further important insights. The nature

of the dark matter, for example, might provide weak scale information. In this light, the

planned LISA gravitational wave detector could be very exciting since the frequencies of the

observable gravitational waves lie in just the right range for exploring the electroweak scale.

In this letter, we apply this observation to the warped five-dimensional spacetime of the

RS1 model and show that the early universe phase transition between the AdS-Schwarshild

and RS1 phases could provide a sizable signal.

The frequency of gravitational waves observed today is

f = f∗
a∗
a0

= f∗

(

gs0

gs∗

)1/3 T0

T∗
≈ 6 × 10−3mHz

( g∗
100

)1/6 T∗

100 GeV

f∗
H∗

(1.1)

where f∗, T∗, H∗, g∗ are respectively the characteristic frequency, temperature, Hubble

frequency and number of relativistic degrees of freedom at the time when the gravitational

waves were produced. For weak scale temperatures and f∗/H∗ ∼ 102 (as expected for weak

scale phenomena as we explain below), this is peaked in the LISA band (10−4 − 10−2) Hz

and is actually a stronger signal for the range slightly outside that probed by the LHC.

That is, even if weak scale physics is at the high end of the LHC range, we might probe

the underlying theory further at LISA.

However, not all weak scale physics is relevant to LISA observations since only rather

dramatic dynamical phenomena will give rise to detectable gravitational waves. One such

possibility is a sufficiently strong first order phase transition. In this letter, we point out

that if the RS1 warped geometry resolution to the hierarchy problem [1] is correct, it
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could yield strong detectable signals. This would be significant not only as a potential

confirmation of LHC results, but is also very promising because the potential energy reach

of the gravitational wave signal is higher, and phase transitions up to 10 TeV might yield

visible signals, while the second generation space interferometer Big Bang Observer (BBO)

can explore even higher energies up to 107 GeV [2]. Furthermore, the LISA detector would

probe the early universe phases, potentially supplementing whatever might be learned at

the LHC.

The key point is that at high temperature, there is an AdS-Schwarschild phase involving

a single brane where the graviton amplitude is peaked, whereas at low energies, there

are two branes with a slice of bulk AdS in between [1]. In ref. [3], it was shown that

in the perturbative regime one expects a first order phase transition between these two

phases, which proceeds through the nucleation of “brane bubbles”. Ref. [3] focused on the

difficulty of completing this phase transition in the perturbative regime consistently with

small back-reaction, finding their analysis favored lower N (where N is the parameter of

the conformal field theory that determines the ratio of the five-dimensional Planck scale

and the AdS scale). In this letter, we discuss some aspects of these results, considering also

the negative ǫ case (essentially the squared mass of the Goldberger-Wise scalar living in

the AdS bulk), and demonstrate the potential detectability of the gravitational wave signal

associated with the first order phase transition over a large region of parameter space.

Our analysis follows closely the methodology of refs. [4 – 11] which applies to very

strong phase transitions (like the phase transition we are considering in this work, as will

be shown shortly), in which case bubble expansion proceeds via detonation [7]. In this

regime, the gravitational wave signal depends only on two parameters. The first is the

dimensionless parameter α, which is defined as the ratio of the latent heat to the radiation

energy density evaluated at the nucleation temperature Tn. To achieve a visible signal at

LISA, α must be sufficiently big, at least 0.2 [11, 2].

The second parameter, β, tells the time variation of the bubble nucleation rate and

hence the length of time of the phase transition. It is defined as β/H = Td(S3/T )/dT where

S3 is the free energy of the bubble and the derivative is also evaluated at the nucleation

temperature. A large signal requires a relatively slow phase transition so β/H should be

small. A visible signal at LISA requires β/H ∼< 103. β/H is dimensionless and its size is

mainly determined by the shape of the effective potential at the nucleation temperature Tn.

It depends on the energy scale Tn only logarithmically. Typically, β/H ∼ S3/T . Nucleation

occurs when the probability to nucleate one bubble per horizon time and horizon volume

∼ T 4e−S3/T /H4 becomes of order unity. Therefore the value of S3/T at Tn is about

4 ln(mP l/Tn). For Tn ∼ 102 − 103 GeV, we then expect β/H ∼ O(102) which is in the

visible range.

There are two sources of gravitational waves from a first-order phase transition: bubble

collisions and turbulence in the plasma. The corresponding relic signals, expressed in terms

of the fraction of the total energy density today, at the peak frequencies fcoll and fturb,
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are [7 – 9, 11]:

Ωcoll h2
0(fcoll) ≃ 1.1 × 10−6κ2

[

H∗

β

]2 [

α

1 + α

]2 [

v3
b

0.24 + v3
b

] [

100

g∗

]1/3

(1.2)

fcoll ≃ 5.2 × 10−3mHz

[

β

H∗

] [

T∗

100GeV

]

[ g∗
100

]1/6

(1.3)

Ωturb h2
0(fturb) ≃ 1.4 × 10−4u5

sv
2
b

[

H∗

β

]2 [

100

g∗

]1/3

(1.4)

fturb ≃ 3.4 × 10−3mHz
us

vb

[

β

H∗

] [

T∗

100GeV

]

[ g∗
100

]1/6

(1.5)

us and κ are respectively the bubble wall velocity, the turbulent fluid velocity and the

fraction of vacuum energy which goes into kinetic energy of bulk motions of the fluid.

They are given by [12, 7, 11]

vb(α) =
1/
√

3+
√

α2+2α/3

1 + α
, us(α) ≃

√

κα
4
3

+ κα
, κ(α) ≃ 1

1+0.715α

[

0.715α+
4

27

√

3α

2

]

Formulae (1.4), (1.5) for turbulence were recently corrected in [13] and they are being

revisited for the collision signal [14]. However, for the purpose of the present paper, we use

eqs. (1.2), (1.3), (1.4), (1.5).

The phase transition occurs when the radion that determines the distance between

the two branes of RS1 is stabilized. Note that the original description of RS1 is five-

dimensional, yet we are using a four-dimensional formalism to determine the strength of

the phase transition and the gravitational wave signal. This is justified in the regime

where the radion is light (lighter than the KK modes) so that it dominates the potential

in the RS regime, which requires that the parameters determining the radion potential

are perturbative. In the high temperature phase, the AdS-Schwarschild metric can be

interpreted holographically in terms of a four-dimensional CFT, so one can use the four-

dimensional formalism in that regime as well.

To evaluate the relevant quantities, we use the formalism of Creminelli et al [3], who

assumed the original Goldberger-Wise (GW) model in which there is a scalar field whose

bulk mass m is determined by the parameter ǫ =
√

4 + m2/k2−2. This field takes values v0

on the Planck brane and v1 on the TeV brane. From the five-dimensional perspective, the

radion is stabilized by the tension between the mass term and the gradient contribution to

the energy. Because of the background anti de Sitter space, ǫ ≈ m2/4k2 can be positive or

negative, though the original paper considered only the positive case [15]. Other variations

on this model include interactions of the scalar field but we don’t expect this to change the

results significantly.

One can also consider the holographic interpretation of this model [16, 17]. In this

interpretation one has a marginal operator, which is relevant for positive ǫ and irrelevant

for negative ǫ. The positive case is peculiar from a holographic perspective. In this inter-

pretation the breaking of conformal symmetry in the IR occurs because of the competing

effect of two terms. The negative ǫ case is more general and conventional, and corresponds
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to a coupling that grows in the IR, where it breaks the conformal symmetry, analogously

to the QCD phase transition. We will consider both positive and negative ǫ.

The five-dimensional metric is ds2 = e−2kyηµνdxµdxν + dy2 where k = 1/L is the AdS

curvature. The kinetic term for the radion field µ = ke−ky, in terms of the five-dimensional

Planck mass M , is [17 – 19]

Lkin = −12
√−g(ML)3(∂µ)2 (1.6)

and its induced four-dimensional potential is [15]

VGW(µ) = ǫv2
0µ

4
0 +

[

(4 + 2ǫ)µ4(v1 − v0(µ/µ0)
ǫ)2 − ǫv2

1µ
4 + δT1µ

4
]

+ O(µ8/µ4
0) , (1.7)

where µ0 is the UV scale and |ǫ| ≪ 1 has been assumed. The terms v0 and v1 are the vevs

in Planck units of the Goldberger-Wise field on the Planck and TeV branes.

We sometimes modify the potential of [15] to allow a term δT1µ
4 corresponding to a

change of the TeV brane tension. Such a term is permissible and allows for a larger range

of viable models.

Provided that δT1 < ǫv2
1 the potential above has a global minimum at

µTeV± ≈ µ0

(

v1

v0

)1/ǫ
[

1 ± 1

2

√

−δT1

v2
1

+ ǫ

]1/ǫ

(1.8)

where ± corresponds to the cases ǫ > 0 and ǫ < 0 respectively. For ǫ < 0, we have the

additional condition δT1 > −v2
1(4 + ǫ) so that the minimum above does not become a

maximum. For ǫ > 0 and δT1 = 0, µTeV± ∼ µ0 (v1/v0)
1/ǫ. In that case, the hierarchy

between the weak and Planck scale can be naturally obtained for parameters not far from

1. For ǫ < 0 and δT1 = 0 the only minimum of the potential is at µ = 0. With nonzero

δT1 < 0 there is also the desired minimum at µ ∼ µ0(v0/v1)
1/|ǫ|(1 −√

δT1/2v1)
1/|ǫ| and a

viable solution can be obtained for v0 < v1 [16, 17]. Note that µ = 0 is also a minimum

of the potential but for ǫ > 0 and δT1 < −v2
1(4 + ǫ), the barrier disappears and µ = 0

becomes a maximum.

For small ǫ, the value of the potential at the minimum (1.8) where the radion achieves

its vacuum expectation value is

V± ≈ µ4
TeV± ǫ

(

δT1/2 ∓ v1

√

−δT1 + ǫv2
1

)

(1.9)

where we have dropped ǫv2
0µ

4
0 which is common to the high and low energy phases and

won’t contribute to α or β.

When δT1 = 0, ǫ has to be positive. The value of the potential at the minimum scales

like −ǫ3/2v2
1µ

4
TeV, where v1 is the assumed value of the Goldberger-Wise field on the TeV

brane. As the free energy of a critical bubble is smaller if the minimum is deep, it will clearly

be smaller when v1 is larger. However, overly large v1 could result in a large back-reaction

to the potential as we will see in section 4. A quick way to extrapolate the δT1 = 0
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results for large δT1 is to note that the potential at the minimum is then proportional

to µ4
TeV

ǫ(δT1/2 ∓ v1

√
−δT1). In other words, the quantity ǫ3/2v2

1 which appeared in the

minimum energy for δT1 = 0 is replaced by ǫδT1v
2
1 . Clearly, larger |δT1| yields a deeper

minimum. This makes the tunneling amplitude bigger.

2. Completion of the phase transition

The free energy of the AdS-S phase is [3]

FAdS-S = −2π4(ML)3T 4 (2.1)

(2.1) is a minimum of the free energy of AdS-S corresponding to the Hawking temperature

at the horizon of the black hole solution equal to the temperature of the universe. By

holography, FAdS-S can be interpreted as the free energy of a strongly coupled large N CFT

with N2 = 16π2(ML)3. The exact relation depends on the precise theory; this formula

is for N = 4 SU(N) super Yang Mills [20]. We often choose to use the parameter N to

characterize the AdS curvature.

In the Randall-Sundrum phase at high temperature, the TeV brane is pushed by ther-

mal effects to the AdS horizon in the absence of the Goldberger-Wise field. Since it costs

energy for µ to be nonzero, there exists an energy barrier which leads to a first-order phase

transition. The phase transition can take place after the energy of the AdS-S phase equals

that of the RS phase. Another argument for the first order phase transition is provided by

the AdS-CFT correspondence that relates the RS model with a 4D confining gauge theory.

It is well-known that the confining phase transition of large N (N ∼> 3) gauge theories

is first order (growing more strongly as N is large). In the 4D description, the stabilized

radion is some glueball state. The critical temperature is the temperature at which the RS

energy at the minimum of the GW potential equals the AdS-Schwarschild solution energy.

We have

Tc =

(−8V±

π2N2

)1/4

(2.2)

The phase transition can proceed only if the bubble nucleation rate is larger than the

expansion rate of the universe i.e. S3/T ∼< 4 ln(mP l/Tn) where S3 is the free energy of

a critical bubble. For electroweak scale temperatures, this corresponds to the condition

S3/T ∼< 140. The latent heat is of the order of V±.

We now follow the assumption of [3], where the contribution from the AdS-S side to

the thermal bounce action is neglected. This is reasonable when v1 and ǫ are small and the

potential is consequently shallow, in which case the bubbles are big and most of the action

comes from the RS regime as µ changes from 0 to µTeV. We therefore integrate only over

the RS side when evaluating the action. This approximation is reasonable provided that

Tc ≪ µTeV± in which case only the radion mode contributes to the action and is valid so

long as v1 is small.1

1Before the holographic description was emphasized, a study of the phase transition with a different

radion potential (and a different initial thermal phase) was performed in [21].
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The quantity α depends on the free energy difference between the two minima, which is

∆V±(µ) = VGW (µ) +
π2N2T 4

8
= V±

[

VGW (µ)

V±
−

(

T

Tc

)4
]

(2.3)

where we have deliberately left open the possibility that at nucleation VGW (µ) is not exactly

the value of the potential at the minimum V±.

The quantity β is determined from the bubble action, which is greatly simplified in two

limiting cases: the thin-wall and thick-wall approximations. In the first case, the bubble

radius is much larger than the thickness of the wall (region over which the value of µ varies).

This applies when ∆V± is much smaller than the height of the barrier separating the two

minima (which we do not know).

However, if the thin-wall action is too big to allow nucleation, the action proceeds

via thick-wall bubbles. As the temperature drops, ∆V± increases and eventually becomes

larger than the barrier. It is then favorable to make the wall thickness comparable to the

bubble size to minimize the surface term. We will soon see that the phase transition occurs

primarily in the thick-wall regime in which supercooling is relatively large.

The tunneling rate is proportional to exp(−S), where S = S3/T if thermal bubbles

dominate, where S3 = 4π
∫

r2dr[(∂µ/∂r)2/2 + ∆V (µ)] is the 3D Euclidean action of an

O(3)-symmetric critical bubble, and S = S4 = 2π2
∫

r3dr[(∂µ/∂r)2/2 + ∆V (µ)] in the

regime where O(4)-symmetric bubbles dominate.

In general, nucleation proceeds via thermal bubbles but if the phase transition doesn’t

complete before a temperature T such that T ∼< (2R)−1, where R is the radius of the O(4)

bubble, and S4 < S3/T the O(4) symmetric solution [22] applies. We find that S4 is never

smaller than S3/T in the thin wall approximation. However, for thick wall, there will be

some region of parameter space where S4 is more favorable.

In the thin-wall approximation [22],

S3 = (16π/3)
(

3N2/2π2
)3/2

S3
1/(∆V±(µ))2 (2.4)

where S1 =
∫ µTeV±

0
dµ

√

2|∆V | ≈ −
∫ µTeV±

0
dµ

√−2V± is the surface tension evaluated in

the limit T → Tc and the (3N2/2π2)3/2 factor comes from the canonical normalization of

µ. We evaluate the denominator in (2.4) at the minimum of the potential, µ = µTeV, for

which:

∆V± = V±(1 − (T/Tc)
4) (2.5)

This leads to2 S3 ∼ (16π/3)23/2(µ3
TeV

/
√

|V±|)
(

3N2/2π2
)3/2

/(1 − (T/Tc)
4)2 which can be

expressed as
S3

T
≈ 2.95 N7/2

∣

∣

∣
ǫ
(

δT1

2
∓ v2

1

√

− δT1

v2
1

+ ǫ
)
∣

∣

∣

3/4
× (Tc/T )

(1 − (T/Tc)4)2
(2.6)

In this formula, we have neglected the unknown barrier contribution which could change

the result by a factor of order unity. It turns out the transition is dominated by the thick

wall regime even without additional suppression so that this formula is adequate.

2This is a factor 8 × 23/2 larger than in [3].
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The T -dependent factor in the right of eq. (2.6) blows up as T approaches Tc. As T

slightly decreases, it becomes of order one, reaches a minimum at T = Tc/3
1/2 and grows

again. Clearly, the nucleation condition S3/T ∼< 140 is satisfied when this factor is near

its minimum, for which it is ∼ O(1). This typically takes place when T is between Tc/3
1/2

and 0.9 Tc.

From eq. (2.6), it is clear that there is a constraint that N not be too large (or

equivalently, the AdS curvature scale not be too small). This follows from the large entropy

in the AdS-Schwarschild phase, which grows as N2, whereas the RS phase entropy does

not. This means that the phase transition is entropically disfavored for large N . We can

understand the N -dependence in the action as arising from the radion-normalization and

from the shallowness of the potential. This latter N -dependence comes from the size of the

bubbles, which grows with N , and would not be present if v1 was as large as N . However

perturbativity of the model requires v1 < N . We will comment further on this point below.

We have ignored the T -dependent corrections to the radion potential so far. We can

model the radion potential at finite temperature just assuming that the mass of the CFT

degrees of freedom is proportional to the vev of µ, m = gµ, according to the general

formula:

∆V (µ, T )=
∑

F

gF T 4

2π2

∑

n

(−1)n

n2

(mF

T

)2

K2

(nmF

T

)

−
∑

B

gBT 4

2π2

∑

n

1

n2

(mB

T

)2

K2

(nmB

T

)

(2.7)

This is the 1-loop thermal corrections to the radion potential taking into account the

interactions of the radion with the N2 CFT degrees of freedom.
∑

B/F gB/F = 45N2/8π2.

At µ = 0, this reproduces the T 4 radiation energy density, but as soon as µ is of order T ,

the CFT degrees of freedom are massive and the T -dependent piece falls off. As illustrated

on the fourth plot of figure 3, at T close to Tc, the barrier is big and prevents tunneling. But

as T goes below Tc/2, the barrier becomes much smaller than the energy difference between

the two minima and we tend toward the zero temperature radion potential. The transition

does not take place until the temperature is low enough so that we are in the thick wall

approximation. This trend is general, even though detailed predictions will depend on the

precise coefficient g between the mass of the CFT degrees of freedom and the radion. We

took g = 1 in the right bottom plot of figure 3.

Thin-wall bubbles generally yield too big an action for nucleation and we now show that

thick-wall bubbles dominate. As we have just argued, it is a good approximation to use the

zero-temperature radion potential to estimate the tunneling action. The action for thick-

walled bubbles is S3 ≈ 2πRµ2 − 4πR3|∆V |/3 [23] and its minimal value S3 = 8πR3|∆V |/3
associated with R = µ

√

3N2/2π2/
√

2|∆V | leads to

S3 ≈ (4π/3)(µ3/
√

2|∆V±|)
(

3N2/2π2
)3/2

(2.8)

which is, assuming again that at nucleation µ = µTeV:

S3 ≈ (4π/3)(µTeV
3/

√

2|V±|)
(

3N2/2π2
)3/2

/(1 − (T/Tc)
4)2 (2.9)

This action is smaller by an overall numerical factor (sixteen) than the thin wall formula.

– 7 –
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We also consider the possibility of O(4)-symmetric vacuum bubbles. These can be

relevant only if the nucleation does not take place via thermal bubbles. The thin-wall

action in this case is [22] S4 = 27π2S4
1 × (3N2/(2π2))2/2|∆V±|3 whereas the thick-wall

action is S4 = π2R2µ2 − π2R4|∆V |/2, which is minimal for R = µ
√

3N2/2π2/
√

|∆V |
leading to

S4 = π2µ4(3N2/2π2)2/(2|∆V±|). (2.10)

and if µ = µTeV:

S4 = π2µ4
TeV(3N2/2π2)2/(2|V±|(1 − a4)). (2.11)

The ratio of the thick-wall to thin-wall action is N -independent and for µ = µTeV, it scales

as:

S4

S3/T
=

3
√

3

83/4
√

π

T
Tc

√

1 − ( T
Tc

)4

(2 + ǫ)1/4

√
bǫ1/4[−c ∓

√

4c + ǫ(4 + ǫ)]1/4
(2.12)

It will thus be more favorable to tunnel via O(4)-symmetric bubbles if T/Tc is small, ǫ

is large and b = v1/N and c = |δT1|/v2
1 are large. Using the O(4) rather than the O(3)

symmetric solution corresponds to Tn < (2R)−1.

The value of µ to be used in eq. (2.8) and (2.10) is actually not µTeV but the value at

the time of the tunneling which is typically smaller than µTeV. That is because the value

of the field that minimizes the action is not exactly the value of the field at the potential

minimum [23]. The field tunnels to a value near the minimum and after tunneling rolls to

the minimum. We first evaluated the nucleation action assuming that µ = µTeV at the time

of nucleation, to get some analytical dependence on parameters. To derive our results, we

do not apply formula (2.9) and (2.11) where the radion value is taken at the minimum

of the potential. We search for the value of the radion field µ minimizing the bubble free

energy, which is, for the O(3) action,

µ = 6
|∆V±|
|∆V±|′

(2.13)

and for the O(4) action

µ = 4
|∆V±|
|∆V±|′

(2.14)

where

|∆V±| = V±

[

a4 − V±(µ)

V±

]

, a =
Tn

Tc
(2.15)

and

V± = µ4
TeV v2

1

ǫ

2 + ǫ

[

c ±
√

4c + ǫ(4 + ǫ)
]

(2.16)

is the value of the potential at the minimum of the potential and we remind that c =

|δT1/v
2
1 |. We re-express everything in terms of the variable

Y ≡
(

µ

µTeV

)ǫ

(2.17)
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0.1 0.2 0.3 0.4 0.5
-Ε

0.5

1

1.5

2

2.5
v1�N Ε<0 , ∆T1= - 0.5 v1

2 , N=12

approximate OH4L nucleation

improved OH4L nucleation

Figure 1: Lines delimiting the region in (ǫ, v1) parameter space where the phase transition com-

pletes (we have to be above the dashed line for nucleation to take place). The upper line comes

from using the approximate eq. (2.11) while the lower line results from solving eq. (2.14).

Defining

X± ≡ 1 + ǫ
4
± 1

2

√

c + ǫ(1 + ǫ
4
)

1 + ǫ
2

(2.18)

we get

V±(Y ) = µ4
TeVY

4
ǫ v2

1 [(4 + 2ǫ)(1 − X±Y )2 − ǫ − c] (2.19)

Eq (2.13) and (2.14) can be rewritten as

2(2 − ǫ)X2
±Y 2 − 8X±Y + 4 − ǫ − c − 3a4Y − 4

ǫ ǫ(2 − ǫ)
[

− c ∓
√

4c + ǫ(4 + ǫ)
]

= 0 (2.20)

(2 + ǫ)(4 + 2ǫ)X±Y (1 − X±Y ) − 2a4Y − 4
ǫ

[

− c ∓
√

4c + ǫ(4 + ǫ)
]

= 0 . (2.21)

We then look for the regions in (ǫ, v1) plane where the phase transition completes. We

evaluate S3/T and S4 at the Y solution of eq (2.20) and (2.21) and follow their evolution

with temperature. The nucleation temperature is defined by the condition S3/T = 140 or

S4 = 140. Whether S3/T or S4 first reaches this critical value determines whether O(3)

or O(4) bubbles are nucleated. Note that the O(4) nucleation region is simply given by

v1/N > 3N/(4π
√

70(c + ǫ)) where the right-hand side corresponds to the limit Tn → 0. To

illustrate how much difference this procedure makes, we compare the approximate solution

(using µ = µTeV) and the accurate one in figure 1 for some particular choice of parameters

in the O(4) case. We get the same kind of discrepancy for O(3). The biggest effect is for

small ǫ in which case the potential at the minimum is very shallow. Consequently, it does

not cost much potential energy to tunnel to the wrong place, namely to µ < µTeV.

We have checked in various regions of parameter space that the thick wall approxima-

tion gives an answer that is indeed close to the exact bounce computed numerically. This

is illustrated in figure 2 and figure 3.

Finally, we note that there exists the possibility of an inflationary phase before the

phase transition occurs. This is due to the vacuum energy −V± in the AdS-Schwarschild

phase if we set the cosmological constant to 0 in the RS phase. Inflation could in principle
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Figure 2: Comparison of the thin and thick wall approximations (dotted lines) with the exact

solutions obtained by solving for the bounce numerically (solid lines).

0 0.5 1 1.5 2
v1�N

1

5
10

50
100

500
1000

S3�Tc N=3, Ε=-0.25 , ∆T1=-0.5 v1
2

thin wall

thick wall exact

0 0.5 1 1.5 2
v1�N

1

5
10

50
100

500
1000

S4 N=3, Ε=-0.25 , ∆T1=-0.5 v1
2

thin wall

thick wall
exact

0 0.5 1 1.5 2
v1�N

1

5
10

50
100

500
1000

S3�Tc Ε=-0.25 , ∆T1=-0.5 v1
2

N=12

N=6

N=3

250 500 750 1000 1250 1500
Μ

-1´1012

-8´1011

-6´1011

-4´1011

-2´1011

Vtot HΜ,TL

T=0

T=Tc�3

T=Tc�4

Figure 3: Top: comparison between thick wall, thin wall and exact solutions at fixed ǫ and δT1;

bottom left: exact results for different values of N . bottom right: Typical evolution of the radion

potential with temperature. The height of the barrier falls off as T goes down. For T below Tc/2,

it is a very good approximation to use the zero temperature potential to compute the bounce.
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start when the temperature is of order Tc. However, even if inflation were to occur, the

inflationary epoch would last only a very short time as the number of e-foldings would be

only ln(Tc/Tn). Therefore, even if the universe inflates above the nucleation temperature,

the transition would typically complete in less than a single e-folding. This is true even if

the universe settles into the wrong (µ = 0) minimum at early times. In fact, because we

neglected the AdS-S contribution to the bounce, the action associated with tunneling from

this false minimum would be precisely the same as what we’ve calculated.

To summarize this section, we have extended the Creminelli et al calculation to the

ǫ < 0 and δT1 6= 0 cases. In addition, we considered the nucleation of thick-walled bubbles

rather than thin-walled ones, which applies in the regime of large supercooling. We com-

puted the free energy of a critical bubble by searching for the value of the radion field that

minimizes the action, rather than assuming that the radion value sits at the minimum of

the potential at the time of nucleation. Also relevant in the regime of large supercooling is

the nucleation of O(4) symmetric bubbles. These effects improve the nucleation probability.

3. Gravitational wave signal

We can now determine α and β and hence the gravitational wave signal. We repeat that

we are working under the assumption that the phase transition is very strong (as will

be justified below), which is why predictions can be given as functions of α and β/H∗

only. The signal obviously grows with α as the more latent heat that is released, the more

measurable is the phase transition. The quantity α can be estimated as

α =
|∆V±|

π2N2T 4/8
=

1

a4

V±(Y )

V±
− 1 (3.1)

To get a feeling for the results, we will first assume that at nucleation µ = µTeV, in which

case ∆V± = −π2N2T 4
c (1− (Tn/Tc)

4)/8. Hence we can determine α simply in terms of the

ratio of the nucleation to the critical temperature as

α = (T 4
c − T 4

n)/T 4
n (3.2)

The size of the signal also increases with the duration of the phase transition β−1 given in

terms of a = Tn/Tc by:

β

H
=

{

S3(Tn)/Tn × 3a4−1

1−a4 ≈ 140 × 3a4−1

1−a4 for O(3) solution

S4(Tn) × 4a4

1−a4 ≈ 140 × 4a4

1−a4 for O(4) solution
(3.3)

Interestingly, α and β/H do not depend explicitly on the parameters of the GW

potential, ǫ, v1, and δT1 but only on a = Tn/Tc. Of course, Tn and Tc implicitly depend on

ǫ, v1, and δT1. Again, we have not included the extra contribution from the T -dependence

in the RS potential. This would lower the value of the latent heat but also lower the value

of Tc and we expect that the effect on Tn/Tc and thus α should not be significant. It could

change the calculation of β/H however.
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Figure 4: α is the ratio of the latent heat to the radiation energy density in the CFT phase at

the time of nucleation, given by eq. (3.2). It increases as the ratio of the nucleation temperature

Tn to the critical temperature Tc decreases. Second plot is β/H from eq. (3.3) where β−1 can be

understood as the duration of the phase transition. The amplitude of the gravitational wave signal

increases with α and decreases as (β/H)−2.

From figure 4, it is clear that α can be larger than 1 in much of the parameter regime.

In particular, it gets very large if Tn/Tc < 1/31/4, when O(4) symmetric bubbles have

to be considered. This justifies the approximation that bubble expansion proceeds via

detonation. We expect large signals at LISA, whose sensitivity requires at least α ∼> 0.2

and β/H ∼< 1000 for observability of the signal [11, 2] (for a general detectability analysis

at LISA and BBO in the (α, β/H) plane, for any given temperature, see [2]).

All predictions are functions of the nucleation temperature Tn which can be computed

in the ǫ, v1 plane. We will present in figure 7 the region of this plane in which the phase

transition can take place. However, there will be strong constraints from perturbativity and

back-reaction which we discuss in the following section, and that will reduce the region of

parameter space where predictions of large signals are reliable. We address these constraints

in the next section.

We now show some typical values of the quantities that are relevant to the gravitational

wave signal as a function of v1. Figure 5 shows the values of Tn/Tc, Tn/µTeV, α, β/H

as well as the characteristic quantities of the gravitational wave signal obtained for a

benchmark point ǫ = −0.25, |δT1| = v2
1/2. The predicted gravitational wave spectrum for

two particular values of v1 are presented in figure 6. In this region of parameter space

there is a huge signal of gravitational waves. While relatively large values of v1/N are

needed for the phase transition to take place, once we are in the region where there is a

phase transition, the smallest allowed values of v1/N lead to the largest signals (as much

as three orders of magnitude above LISA’s sensitivity) as they correspond to the largest

amount of supercooling. The largest values of v1 lead to larger characteristic frequencies

no more observable at LISA but within the sensitivity range of BBO. These larger values

of v1 are worse for perturbativity in any case. Note also that in this case, the temperature

of the transition is not far from the KK scale given by µTeV. For the particular region
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Figure 5: α and β/H determine the spectrum of gravitational waves. They are calculated for some

benchmark point: ǫ = −0.25, N = 12, δT1 = −0.5v2

1
. The smallest values of v1/N correspond to a

large amount of supercooling i.e. a small value of the ratio Tn/Tc. This ratio varies between 0.23

for v1/N = 0.7 to 0.87 for v1/N = 1.5. Assuming that µTeV = 5TeV, the corresponding nucleation

temperatures are in the range 490GeV — 2700GeV. We also show the peak frequency fpeak of the

gravitational wave signal from turbulence and Ωpeakh
2. The peak frequency depends on µTeV, while

α, β/H and Ωpeakh
2 do not. As shown in figure 6, this can lead to a spectacular signal at LISA

and/or BBO.

of parameters of figure 5, nucleation takes place via 0(4) bubbles for v1/N < 1.1 and via

0(3) bubbles for larger v1/N . Since S3/T and S4 scale as a positive power of N , large N

suppresses nucleation and we present results for the maximum value of N , N = 12, beyond

which the phase transition cannot complete. Relatively low values of N are reasonable

to explore since if N were much larger, one risks losing asymptotic freedom. In any case,
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Figure 6: Relic energy density in gravitational waves produced at the phase transition, ΩGW h2,

versus frequency for two values of v1 corresponding to the benchmark point of figure 5. The upper

dashed orange line is the LISA sensitivity. The lower one is the sensitivity for the second generation

Big Bang Observatory. For each set of spectra, the first peak is from turbulence while the second

peak is from bubble collisions. v1 = 0.7N leads to a very strong phase transition (α = 26, β/H = 21)

at a temperature Tn = 490GeV and a huge signal at LISA. For larger v1, β/H is higher and the peak

frequencies are shifted to larger values. At some point, the signal is no more visible by LISA but still

observable at BBO. The v1 = 1.1N spectrum corresponds to α = 1.6, β/H = 350 and a nucleation

temperature Tn = 1830GeV. The horizontal lines are gravitational wave spectra expected from

inflation, for comparison (BBO is mainly planned to detect these gravitational waves), for two

different scales of inflation. The dashed red curve is the expected irreducible background due to

white dwarf binaries [26].

the size of the gravitational wave signal does not depend explicitly on N but only on

the amount of supercooling, which means that we prefer to live close to the limits of the

region in the (ǫ, v1/N) parameter space where the transition completes. While N is very

important to determine the region of parameter space where the phase transition takes

place, once N is fixed, the size of the GW signal depends only on how far we are from the

limits of the underlying region, which depend solely on v1/N and ǫ. And different values

of N can lead to the same size for the signal. Therefore, the choice N = 12 in figure 5 and

figure 6 does not really matter.

Note that the results depend on the scale µTeV only through the frequency of the

signal. Indeed, α does not depend on µTeV. S3/T , S4 and β/H do not depend on µTeV

explicitly. It is only when they are evaluated at the nucleation temperature that some weak

logarithmic dependence on the energy scale of the phase transition appears. Therefore, the

amplitude of the signal Ωh2 virtually does not depend on µTeV. On the other hand, the

temperature of the transition and thus the peak frequency of the signal is proportional to

µTeV. In the particular example of figure 5, we plot the peak frequency in the three cases

µTeV = 3, 5, 10 TeV. This shows that it is possible to see the peak of the turbulence signal

at LISA for µTeV as large as ∼10 TeV. This does not mean that higher values of µTeV are

not accessible. In fact, for some ǫ, v1 values, it could still be possible to see at LISA the
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low frequency tail of the signal for µTeV as large as a few hundreds of TeV. This can easily

be seen by translating the blue peak of the first plot of figure 6 to the right by a factor

µTeV/5 TeV.

4. Perturbativity constraints

We have seen in the last section that the first order phase transition from AdS-Schwarschild

to RS1 geometry could lead to spectacular gravitational wave signals if the first order phase

transition completes at about the TeV scale. In this section, we consider the constraints

from perturbativity and the limits on our perturbative analysis. We express our answers

in terms of N of a CFT but that is directly related to the ratio of mass scales through our

assumed relation (ML)3 = N2/16π2. In order to trust the background AdS solution, we

impose 1/(16π2(ML)3) ∼< 1, which leads to the weak bound N ∼> 1. Most phenomenological

models have relatively small values of N . As we will see, for N ∼> 12, the transition cannot

complete. Small v0 and small ǫ, which are needed for perturbativity, suppress the tunneling

rate. We now consider the constraints on these parameters.

Essentially there is a trade-off between good ranges of each of the parameters. Smaller

N leads to better values of v0 and v1. The constraints on v0 and v1 come from avoiding too

large a back-reaction to the AdS energy of the five-dimensional theory, as well as imposing

the radion-dominance assumption that was critical to the four-dimensional analysis. When

a vev is too big, there can be large corrections to the GW potential from KK modes and

large corrections to the radion kinetic term due to mixing with the GW scalar. According

to [24], the last two sources can be acceptable however. That is, when the full mass matrix

and kinetic matrix are diagonalized, one can still find dominance of the light radion. Of

course, in that case, we are not guaranteed that the radion potential takes the form we

assumed and we are not guaranteed the transition remains first order. However, we see no

reason to assume that in all cases the first order phase transition would disappear, but of

course we don’t know for sure without a more complete analysis in the large vev regime.

Here we will focus on the constraint on small back-reaction to the energy. Notice that

even this is potentially stronger than is necessary. Imposing the constraint v0, v1 < N/(4π)

i.e. requiring that the vevs of the Goldberger-Wise field are smaller than M , the 5d Planck

scale, clearly suppresses the back-reaction. As [25] have shown, small back-reaction to the

energy is not necessarily essential to maintaining the hierarchy.3 Nonetheless, it would be

best to have small back-reaction so that the original AdS space analysis can be trusted.

We view these plots as indicative of the proximity of the perturbativity limits.

The stress tensor for the Goldberger-Wise field φ is

T φ
MN = −gMN [−(∂φ)2/2 − m2φ2/2] − ∂Mφ∂Nφ (4.1)

Using the metric ds2 = (dxµdxµ + dz2)/(k2z2) and φ(z) = Az4+ǫ + Bz−ǫ where

A = z−4−ǫ
1 k3/2 v1 − v0(z0/z1)

ǫ

1 − (z0/z1)4+2ǫ
, B = zǫ

0k
3/2 v0 − v1(z0/z1)

4+ǫ

1 − (z0/z1)4+2ǫ
(4.2)

3Note that their model with large back-reaction would also have a large vev that could induce corrections

to the potential that were not discussed.
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We find

T φ
µν(z) = 2ηµν

[

A2z6+2ǫ(4 + 3ǫ) + ǫB2z−2−2ǫ
]

(4.3)

When we compare this with the energy momentum tensor due to the bulk cosmological

constant Λ5 = −24M3k2

TΛ
µν = (kz)−2ηµνΛ5 (4.4)

we find the condition

v2
0 < 12(ML)3/|ǫ| i.e.

v1

N
<

√

3

4

1

π
√

|ǫ|X

(

µTeV

µ0

)ǫ

(4.5)

on the Planck brane and

v2
1 <

12(ML)3

|(4 + 3ǫ)(1 − X)2 + ǫX2| i.e.
v1

N
<

√

3

4

1

π

1
√

|(4 + 3ǫ)(1 − X)2 + ǫX2|
(4.6)

on the TeV brane, where X ≡ 1 + ǫ
4
± 1

2

√

− δT1

v2
1

+ ǫ + ǫ2

4
, X ∈ [0, 2] appears in the relation

between v0 and v1, eq. (1.8).

If instead of evaluating the constraint on the TeV and Planck branes we integrate it

over z, we get the same as eq. (4.5). For |δT1| = 0, X = 1 and the conditions (4.5) and (4.6)

respectively become v2
1 < 12(ML)3/|ǫ| and v2

0 < 12(ML)3/|ǫ| but for |δT1| = 4v2
1 , the back

reaction on the IR brane leads to the stronger constraint

v2
1 < 3(ML)3 (4.7)

Notice these constraints are readily understood when δT1 is zero. If v2
1 or v2

0 (normalized

to a dimensionless quantity through factors of k) are too large compared to the Planck

scale, the expansion in powers of the Goldberger-Wise field would be invalid. Furthermore,

if the Goldberger-Wise field enters only through the kinetic and mass terms, we have the

approximate condition m2φ2/2 ∼ 2k2ǫφ2 < 24k2M3, we get the conditions above for zero

δT1. With the δT1 turned on and large, it already implies some back-reaction near the TeV

brane.

We plot these constraints in figure 7. For positive ǫ, the IR back reaction constraint is

too big and nucleation never takes place in a regime where we can ignore the back reaction.

Because positive ǫ requires v0 > v1, the UV backreaction condition is usually stronger.

However, from a strictly phenomenological perspective, this constraint is not essential as it

comes from the requirement that the RS model applies all the way to the Planck scale. We

can relax the constraint with a lower cutoff and assume some unknown ultraviolet physics

beyond that scale. In figure 7 , we show how the viable region of parameter space in the

ǫ, v1 plane increases as we lower the UV scale. However, even a UV scale at 105 GeV is not

enough to make nucleation in the perturbative region.
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Figure 7: ǫ > 0 (top) and ǫ < 0 (bottom). The dashed black line delimits the region where

nucleation of O(4) symmetric thick-walled bubbles is possible. We have to be above this line for

O(4) nucleation to take place. The nucleation contour for thick-walled O(3)-symmetric bubbles is

typically slightly above (see the black solid line on the third plot). Close to the nucleation line, the

phase transition is very strong. The pink lines delimit the region where back-reaction is important.

Regions that satisfy the back-reaction constraint are below these lines. Almost no region remains

for ǫ > 0, but with ǫ < 0, some regions satisfy the constraints. We have shown how decreasing N

enlarge the parameter space.

4.1 Negative ǫ

We find that results are more favorable for ǫ < 0. This is not because nucleation is easier

but because the back reaction constraints are weaker. The point is that the constraints on

v0 and v1 are parametrically comparable. But for ǫ < 0, we have v0 < v1 (see eq. 1.8), so
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the perturbativity constraint on v0 is generally satisfied once the constraint on v1 is met.4

As for the IR constraint (4.6), we find regions of parameter space where it is relaxed, for

instance if δT1 = 2ǫv2
1 where the right hand side of the inequality (4.6) blows up to infinity.

This follows from the right hand side of eq (4.5) which blows up at large |ǫ| as (µ0/µTeV)|ǫ|.

All this is illustrated in figure 7. Of course we are ignoring higher order terms so we take

this result as simply indicative of the fact that although nucleation takes place at or above

the perturbativity limit in general for N > 12, the leading term and higher order terms

might conspire to be small.

Notice that the position of the (pink) lines delimiting the perturbativity regions are

N -independent while the nucleation (black) lines get shifted to lower values of v1/N at

smaller N . For instance, for N ∼ 3, 4, it is possible to obtain nucleation at v1/N ∼ 0.1

rather than at v1/N ∼ 1 and therefore to enlarge the region of parameter space where the

phase transition completes in the regime of small back reaction, as illustrated on figure 7.

There is, however, an additional constraint for the negative ǫ case as the operator that

breaks conformal invariance gets strong in the IR. Below the scale of strong coupling Λ, the

conformal picture is spoiled so perturbativity also requires that the nucleation temperature

exceeds Λ, where Λ should correspond to the value of µ at which v1 takes its maximum

value consistent with perturbativity. We find this constraint essentially coincides with

v1/N ∼ 1. Since the strong coupling scale is not a precisely defined quantity, we would

hope that strong coupling effects are not big before nucleation. The first order phase

transition might be possible, even with strong coupling effects included. However, if strong

coupling effects are important, we can no longer be confident about the order of the phase

transition.

5. Conclusion

There can be a significant signal for gravitational waves from the phase transition from

AdS-Schwarschild to RS1. Predictions vary by orders of magnitude depending on the

region of parameter space associated with the scalar potential stabilizing the radion but if

the transition completes, the signal is likely to be significant. The KK scale that can be

probed is much higher than at colliders. An IR scale as large as a few tens of TeV (even

hundred) is in principle reachable at LISA, depending on the region of parameter space.

The uncertainties in the computation come from the unknown temperature-dependence of

the potential and the unknown back-reaction effects.

We have focused on the gravitational wave signal that is indicative of any first order

phase transition; we have not included any features peculiar to this theory. That means

that even if this signal is measured, we cannot definitively state that it was from the phase

transition we considered. However, there have been extensive investigations of existing

4A bound on v0 comparable to (4.5) is obtained in the particular example of ref. [24], where the back-

reaction parameter is defined as l = 4πv0/N . To guarantee that the radion and KK modes are heavy

enough and not too strongly coupled to SM fields on the TeV brane, they need l
∼
< 10 i.e. v0/N

∼
< 1. Since

v1 ∼ v0(µTeV/µ0)
ǫ, this constraint is extremely strong for ǫ > 0 and incompatible with our nucleation

condition but for ǫ < 0, it is readily satisfied.
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weak-scale models, primarily with the aim of studying electroweak baryogenesis, and no

model has yet been found with such a strong transition (i.e. with α ≫ 1). For example,

the phase transition we have considered can be much stronger than the usual EW phase

transition, which is usually constrained by the experimental bound on the Higgs mass. In

our case, there are no such bounds. The radion sector is much less constrained and this

offers the possibility of a strong phase transition. Although it would not be conclusive,

a large LISA signal of the sort we have discussed is likely to be associated with an RS1

cosmological phase transition.

This gravitational wave signature has the advantage of being common to all RS1

models. This is to be contrasted with collider signatures which depend on the details

of the model such as the localization of the Standard Model fermions and gauge fields in

the bulk of AdS5. On the other hand, the signal strongly depends on the radion sector

which to some extent can be probed by collider experiments. We are finding that the phase

transition can proceed only in the regime of large back reaction. According to ref. [24],

the radion couplings are expected to be large in this case. This could indeed imply the

possibility of testing the strength of the transition at colliders.

We emphasize that the uncertainties in the calculation are primarily due to the prox-

imity to the perturbativity limits of the calculation. However, if the phase transition

completes, it is clear that the signal is likely to be large. It will be interesting to see how

far these results can be extended into the nonperturbative regime. It will also be interesting

to investigate other possibilities for weak scale physics and gravitational waves.
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[18] C. Csáki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion

stabilization, Phys. Rev. D 62 (2000) 045015 [hep-ph/9911406].

[19] W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475

(2000) 275 [hep-ph/9911457].

[20] S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001].

[21] J.M. Cline and H. Firouzjahi, Brane-world cosmology of modulus stabilization with a bulk

scalar field, Phys. Rev. D 64 (2001) 023505 [hep-ph/0005235].

[22] A.D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421

[Erratum ibid. B 223 (1983) 544].

[23] G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev.

D 45 (1992) 2685.

[24] L. Kofman, J. Martin and M. Peloso, Exact identification of the radion and its coupling to

the observable sector, Phys. Rev. D 70 (2004) 085015 [hep-ph/0401189].

[25] O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with

scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134].

[26] A.J. Farmer and E.S. Phinney, The gravitational wave background from cosmological compact

binaries, Mon. Not. Roy. Astron. Soc. 346 (2003) 1197 [astro-ph/0304393].

– 20 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C2837
http://arxiv.org/abs/astro-ph/9310044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C024030
http://arxiv.org/abs/astro-ph/0111483
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C103505
http://arxiv.org/abs/astro-ph/0206461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB631%2C342
http://arxiv.org/abs/gr-qc/0107033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2CL27
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C21%2CL27
http://arxiv.org/abs/gr-qc/0303084
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD25%2C2074
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD25%2C2074
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C063521
http://arxiv.org/abs/astro-ph/0603476
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4922
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4922
http://arxiv.org/abs/hep-ph/9907447
http://jhep.sissa.it/stdsearch?paper=08%282001%29017
http://jhep.sissa.it/stdsearch?paper=08%282001%29017
http://arxiv.org/abs/hep-th/0012148
http://jhep.sissa.it/stdsearch?paper=04%282001%29021
http://arxiv.org/abs/hep-th/0012248
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C045015
http://arxiv.org/abs/hep-ph/9911406
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB475%2C275
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB475%2C275
http://arxiv.org/abs/hep-ph/9911457
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C084017
http://arxiv.org/abs/hep-th/9912001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C023505
http://arxiv.org/abs/hep-ph/0005235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB216%2C421
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2685
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2685
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C085015
http://arxiv.org/abs/hep-ph/0401189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C046008
http://arxiv.org/abs/hep-th/9909134
http://arxiv.org/abs/astro-ph/0304393

