945 research outputs found

    Action plan co-optimization reveals the parallel encoding of competing reach movements.

    Get PDF
    Several influential cognitive theories propose that in situations affording more than one possible target of action, we prepare multiple competing movements before selecting one. Here we provide direct evidence for this provocative but largely untested idea and demonstrate why preparing multiple movements is computationally advantageous. Using a reaching task in which movements are initiated after one of two potential targets is cued, we show that the movement generated for the cued target borrows components of the movement that would have been required for the other, competing target. This interaction can only arise if multiple potential movements are fully specified in advance and we demonstrate that it reduces the time required to launch a given action plan. Our findings suggest that this co-optimization of motor plans is highly automatic and largely occurs outside conscious awareness.The study was supported by the Natural Sciences and Engineering Research Council of Canada; the Wellcome Trust; the Human Frontiers Science Program; and the Royal Society. J.P.G. was supported by Banting postdoctoral fellowship and CIHR postdoctoral fellowship awards.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms842

    Noncommutative geometry inspired black holes in higher dimensions at the LHC

    Full text link
    When embedding models of noncommutative geometry inspired black holes into the peridium of large extra dimensions, it is natural to relate the noncommutativity scale to the higher-dimensional Planck scale. If the Planck scale is of the order of a TeV, noncommutative geometry inspired black holes could become accessible to experiments. In this paper, we present a detailed phenomenological study of the production and decay of these black holes at the Large Hadron Collider (LHC). Noncommutative inspired black holes are relatively cold and can be well described by the microcanonical ensemble during their entire decay. One of the main consequences of the model is the existence of a black hole remnant. The mass of the black hole remnant increases with decreasing mass scale associated with noncommutative and decreasing number of dimensions. The experimental signatures could be quite different from previous studies of black holes and remnants at the LHC since the mass of the remnant could be well above the Planck scale. Although the black hole remnant can be very heavy, and perhaps even charged, it could result in very little activity in the central detectors of the LHC experiments, when compared to the usual anticipated black hole signatures. If this type of noncommutative inspired black hole can be produced and detected, it would result in an additional mass threshold above the Planck scale at which new physics occurs.Comment: 21 pages, 7 figure

    Brane Localization and Stabilization via Regional Physics

    Full text link
    Extra-dimensional scenarios have become widespread among particle and gravitational theories of physics to address several outstanding problems, including cosmic acceleration, the weak hierarchy problem, and the quantization of gravity. In general, the topology and geometry of the full spacetime manifold will be non-trivial, even if our ordinary dimensions have the topology of their covering space. Most compact manifolds are inhomogeneous, even if they admit a homogeneous geometry, and it will be physically relevant where in the extra-dimensions one is located. In this letter, we explore the use of both local and global effects in a braneworld scenario to naturally provide position-dependent forces that determine and stabilize the location of a single brane. For illustrative purposes, we consider the 2-dimensional hyperbolic horn and the Euclidean cone as toy models of the extra-dimensional manifold, and add a brane wrapped around one of the two spatial dimensions. We calculate the total energy due to brane tension and bending (extrinsic curvature) as well as that due to the Casimir energy of a bulk scalar satisfying a Dirchlet boundary condition on the brane. From the competition of at least two of these effects there can exist a stable minimum of the effective potential for the brane location. However, on more generic spaces (on which more symmetries are broken) any one of these effects may be sufficient to stabilize the brane. We discuss this as an example of physics that is neither local nor global, but regional.Comment: 4 pages, 2 figures. PRL submitte

    Quantum Black Holes from Cosmic Rays

    Get PDF
    We investigate the possibility for cosmic ray experiments to discover non-thermal small black holes with masses in the TeV range. Such black holes would result due to the impact between ultra high energy cosmic rays or neutrinos with nuclei from the upper atmosphere and decay instantaneously. They could be produced copiously if the Planck scale is in the few TeV region. As their masses are close to the Planck scale, these holes would typically decay into two particles emitted back-to-back. Depending on the angles between the emitted particles with respect to the center of mass direction of motion, it is possible for the simultaneous showers to be measured by the detectors.Comment: 6 pages, 3 figure

    Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes

    Full text link
    A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in arXiv:0907.5107. We formulate the problem in terms of a "spinor-like" first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.Comment: 19 pages, 6 figures, minor typos corrected, 1 page added with a discussion on higher spins, added reference

    Brane-world black holes and the scale of gravity

    Full text link
    A particle in four dimensions should behave like a classical black hole if the horizon radius is larger than the Compton wavelength or, equivalently, if its degeneracy (measured by entropy in units of the Planck scale) is large. For spherically symmetric black holes in 4 + d dimensions, both arguments again lead to a mass threshold MC and degeneracy scale Mdeg of the order of the fundamental scale of gravity MG. In the brane-world, deviations from the Schwarzschild metric induced by bulk effects alter the horizon radius and effective four-dimensional Euclidean action in such a way that MC \simeq Mdeg might be either larger or smaller than MG. This opens up the possibility that black holes exist with a mass smaller than MG and might be produced at the LHC even if M>10 TeV, whereas effects due to bulk graviton exchanges remain undetectable because suppressed by inverse powers of MG. Conversely, even if black holes are not found at the LHC, it is still possible that MC>MG and MG \simeq 1TeV.Comment: 4 pages, no figur

    Pharmacists in Pharmacovigilance: Can Increased Diagnostic Opportunity in Community Settings Translate to Better Vigilance?

    Get PDF
    The pharmacy profession has undergone substantial change over the last two to three decades. Whilst medicine supply still remains a central function, pharmacist’s roles and responsibilities have become more clinic and patient focused. In the community (primary care), pharmacists have become important providers of healthcare as Western healthcare policy advocates patient self-care. This has resulted in pharmacists taking on greater responsibility in managing minor illness and the delivery of public health interventions. These roles require pharmacists to more fully use their clinical skills, and often involve diagnosis and therapeutic management. Community pharmacists are now, more than ever before, in a position to identify, record and report medication safety incidents. However, current research suggests that diagnostic ability of community pharmacists is questionable and they infrequently report to local or national schemes. The aim of this paper is to highlight current practice and suggest ways in which community pharmacy can more fully contribute to patient safety

    Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis

    Get PDF
    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio
    • …
    corecore