112 research outputs found

    Impacts of Irrigation Technology, Irrigation Rate, and Drought-Tolerant Genetics on Silage Corn Production

    Get PDF
    Many studies have examined individual water-saving management practices for corn (Zea mays L.), but few studies have looked at how combinations of practices might further enhance water optimization. The research objectives of this paper were to evaluate the impact of irrigation technology, irrigation rate, and crop genetics, as well as their interactions, on silage corn yield and forage quality. Trials were conducted in three Utah locations from 2019 through 2021. The results from five site-years indicated that the best water optimization practices varied by site-year. Low-elevation sprinklers commonly applied water more efficiently, with four of the five site-years having improved or equivalent yield compared to mid-elevation sprinklers. Irrigation rate reductions and yield losses were not proportional, as a 25% irrigation reduction resulted in better silage quality and a 7% average yield loss across site-years. Further, targeted deficit irrigation (less water during vegetation and more during maturation) was inferior to a uniform deficit during all growth stages. Drought-tolerant genetics often maintained but did not improve yield in extreme water stress environments compared to non-DT genetics. No cumulative benefits were observed when combining irrigation technology, rate, and DT genetics. Irrigation technology had the greatest potential of the three factors to optimize water use in silage corn production in the Western U.S. region

    Guide to Drought Tolerance of Utah Field Crops

    Get PDF
    Crop variety selection is one of the most important choices on the farm. Crop genetics determine a significant portion of the yield potential and resource use efficiency. Crop types and genetics that use water more efficiently will become increasingly important as water becomes scarcer. Throughout Utah and the Western United States, water availability is decreasing due to various factors, including reduced snowpack and rapid urban growth. Alfalfa, other hay, small grains, and corn are grown on more acres than any other crops in Utah and much of the Intermountain West. These crops all have varieties, hybrids, and cultivars with the potential for more efficient water use while mitigating yield loss. Navigating these options and understanding various mechanisms and effectiveness can be a challenge. This guide will address some of the primary mechanisms, options, and effectiveness of crop genetics for improved water use efficiency

    Glass is a viable substrate for precision force microscopy of membrane proteins

    Get PDF
    Scientific Reports ; 5:12550 ; DOI: 10.1038/srep12550.Chada, N. et al. Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins. Sci. Rep. 5, 12550; doi: 10.1038/srep12550 (2015).8 pages.Received: 01 April 2015 ; Accepted: 02 July 2015 ; Published: 31 July 2015.Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on microscope cover glass following a straight-forward cleaning procedure. Direct comparison between AFM data obtained on glass and on mica substrates show no major differences in image fidelity. Repeated association of the ATPase SecA with the cytoplasmic protrusion of SecYEG demonstrates that the translocon remains competent for binding after tens of minutes of continuous AFM imaging. This opens the door for precision long-timescale investigations of the active translocase in near-native conditions and, more generally, for integration of high resolution biological AFM with many powerful optical techniques that require non-birefringent substrates.Includes bibliographical references

    Glass is a viable substrate for atomic force microscopy of membrane proteins : [abstract]

    Get PDF
    Abstract only."2314-Pos Board B6.""Page 458a, Tuesday, February 18, 2014."--At top of page.Abstract in program book: Since its invention in the mid-1980s, the atomic force microscope (AFM) has become an invaluable complementary tool for studying membrane proteins in near-native environments. Historically, mica is the most common substrate utilized for biological AFM. Glass being amorphous, transparent, and optically homogeneous has its own set of advantages over mica and has the potential to broaden the use the AFM into fields that require high quality non-birefringent optical access. The use of silanized glass as AFM substrates has been reported as a means to fine tune surface chemistry. However, such coatings usually require hours of additional preparation time and can lead to increased surface roughness. In this work, we present a simple technique for preparing borosilicate glass as a substrate for two membrane systems: non-crystalline translocons (SecYEG) of the general secretary system from E. coli, and bacteriorhodopsin (BR) from H. salinarum. For both these membrane proteins, quantitative comparisons of the measured protein structures on glass versus mica substrates show agreement. An additional advantage of glass is that lipid coverage is rapid (< 10 minutes) and complete (occupying the entire surface). A goal is to study the bacterial export system using recently developed precision measurement techniques such as ultra-stable AFM

    Glass is a viable substrate for atomic force microscopy of membrane proteins : [abstract]

    Get PDF
    Abstract only."2314-Pos Board B6.""Page 458a, Tuesday, February 18, 2014."--At top of page.Abstract in program book: Since its invention in the mid-1980s, the atomic force microscope (AFM) has become an invaluable complementary tool for studying membrane proteins in near-native environments. Historically, mica is the most common substrate utilized for biological AFM. Glass being amorphous, transparent, and optically homogeneous has its own set of advantages over mica and has the potential to broaden the use the AFM into fields that require high quality non-birefringent optical access. The use of silanized glass as AFM substrates has been reported as a means to fine tune surface chemistry. However, such coatings usually require hours of additional preparation time and can lead to increased surface roughness. In this work, we present a simple technique for preparing borosilicate glass as a substrate for two membrane systems: non-crystalline translocons (SecYEG) of the general secretary system from E. coli, and bacteriorhodopsin (BR) from H. salinarum. For both these membrane proteins, quantitative comparisons of the measured protein structures on glass versus mica substrates show agreement. An additional advantage of glass is that lipid coverage is rapid (< 10 minutes) and complete (occupying the entire surface). A goal is to study the bacterial export system using recently developed precision measurement techniques such as ultra-stable AFM

    Glass : a multi-platform specimen supporting substrate for precision single molecule studies of membrane proteins : [abstract]

    Get PDF
    Abstract only."852-Pos Board B632.""Page 170a, Sunday, February 8, 2015."--At top of page.Abstract in program book: High resolution (~ 1 nm lateral resolution) biological AFM imaging has been carried out almost exclusively using freshly cleaved mica as a specimen supporting surface, but mica suffers from a fundamental limitation that has hindered AFM’s broader integration with many modern optical methods. Mica exhibits biaxial birefringence; indeed, this naturally occurring material is used commercially for constructing optical wave plates. In general, propagation through birefringent material alters the polarization state and bifurcates the propagation direction of light in a manner which varies with thickness. This makes it challenging to incorporate freshly cleaved mica substrates with modern optical methods, many of which employ highly focused and polarized laser beams passing through then specimen plane. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on common microscope cover glass following a straight-forward cleaning procedure. Direct comparison between data obtained on glass and on mica show no significant differences in AFM image fidelity. This work opens the door for combining high resolution biological AFM with powerful optical methods that require optically isotropic substrates such as ultra-stable1 and direct 3D AFM2. In turn, this capability should enable long timescale conformational dynamics measurements of membrane proteins in near-native conditions

    Sorghum-Sudangrass Production Guide

    Get PDF
    Sudex is a warm-season forage crop that performs well in Utah’s dry climate due to its drought tolerance. It can be especially useful during drought years or when irrigation supplies are limited. As well as being a high-quality feed, Sudex has many benefits, including weed suppression and soil-building properties. Although there are concerns for prussic acid and nitrate poisoning, these concerns can be reduced and often eliminated with proper management. This fact sheet provides information to producers about using Sudex and best production practices. Much of the information may also apply to forage sorghum and a few of the major differences will be noted throughout

    Prophetic Reading: Sisterhood and Psychoanalysis in H.D.’s HERmione

    Get PDF
    This article offers a comparative reading of H.D.’s 1927 kunstlerroman à clef, HERmione, and Freud’s Dora alongside an intertextual close reading of its dense web of literary allusions in order to argue that it offers a sustained critique of Freudian psychoanalysis and an alternative origin story for the condition of hysteria. Drawing on the notion of prophecy as it is thematised in the novel, the article demonstrates H.D.’s prefiguring of Juliet Mitchell’s recent reconfiguration of hysteria as a response to, replacement by, or failure of identification with a sibling

    Chemical and biological applications of digital-microfluidic devices

    Get PDF
    IEEE Design & Test of Computers, 24(1): pp. 10-24.Digital-microfluidic lab-on-a-chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, sample and reagent volume reduction, faster analysis, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. In addition to diagnostics, digital microfluidics is finding use in airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In this article, we review efforts to develop various LoC applications using electrowetting-based digital microfluidics. We describe these applications, their implementation, and associated design issues. The ‘‘Related work’’ sidebar gives a brief overview of microfluidics technology
    • …
    corecore