30 research outputs found

    A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings

    Get PDF
    With the advancement of isothermal nucleic acid amplification techniques, detection of the pathogenic DNA in clinical samples at point-of-need is no longer a dream. The newly developed recombinase polymerase amplification (RPA) assay incorporated in a suitcase laboratory has shown promising diagnostic efficacy over real-time PCR in detection of leishmania DNA from clinical samples. For broader application of this point-of-need system, we undertook a current multi-country diagnostic evaluation study towards establishing this technique in different endemic settings which would be beneficial for the ongoing elimination programs for leishmaniasis. For this study purpose, clinical samples from confirmed visceral leishmaniasis (VL) and post-kala-azar dermal leishmaniasis (PKDL) patients were subjected to both real-time PCR and RPA assay in Bangladesh, India, and Nepal. Further skin samples from confirmed cutaneous leishmaniasis (CL) patients were also included from Sri Lanka. A total of 450 clinical samples from VL patients, 429 from PKDL patients, 47 from CL patients, and 322 from endemic healthy/healthy controls were under investigation to determine the diagnostic efficacy of RPA assay in comparison to real-time PCR. A comparative sensitivity of both methods was found where real-time PCR and RPA assay showed 96.86% (95% CI: 94.45–98.42) and 88.85% (95% CI: 85.08–91.96) sensitivity respectively in the diagnosis of VL cases. This new isothermal method also exhibited promising diagnostic sensitivity (93.50%) for PKDL cases, when a skin sample was used. Due to variation in the sequence of target amplicons, RPA assay showed comparatively lower sensitivity (55.32%) than that of real-time PCR in Sri Lanka for the diagnosis of CL cases. Except for India, the assay presented absolute specificity in the rest of the sites. Excellent concordance between the two molecular methods towards detection of leishmania DNA in clinical samples substantiates the application of RPA assay incorporated in a suitcase laboratory for point-of-need diagnosis of VL and PKDL in low resource endemic settings. However, further improvisation of the method is necessary for diagnosis of CL

    Early reduction in PD-L1 expression predicts faster treatment response in human cutaneous leishmaniasis

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by Leishmania donovani in Sri Lanka. Pentavalent antimonials (e.g. sodium stibogluconate; SSG) remain first line drugs for CL with no new effective treatments emerging. We studied whole blood and lesion transcriptomes from Sri Lankan CL patients at presentation and during SSG treatment. From lesions but not whole blood, we identified differential expression of immune-related genes, including immune checkpoint molecules, after onset of treatment. Using spatial profiling and RNA-FISH, we confirmed reduced expression of PD-L1 and IDO1 proteins on treatment in lesions of a second validation cohort and further demonstrated significantly higher expression of these checkpoint molecules on parasite-infected compared to non-infected lesional CD68+ monocytes / macrophages. Crucially, early reduction in PD-L1 but not IDO1 expression was predictive of rate of clinical cure (HR = 4.88) and occurred in parallel with reduction in parasite load. Our data support a model whereby the initial anti-leishmanial activity of antimonial drugs alleviates checkpoint inhibition on T cells, facilitating immune-drug synergism and clinical cure. Our findings demonstrate that PD-L1 expression can be used as predictor of rapidity of clinical response to SSG treatment in Sri Lanka and support further evaluation of PD-L1 as a host directed therapy target in leishmaniasis

    Polymerase chain reaction detection of Leishmania DNA in skin biopsy samples in Sri Lanka where the causative agent of cutaneous leishmaniasis is Leishmania donovani

    No full text
    Leishmania donovani is the known causative agent of both cutaneous (CL) and visceral leishmaniasis in Sri Lanka. CL is considered to be under-reported partly due to relatively poor sensitivity and specificity of microscopic diagnosis. We compared robustness of three previously described polymerase chain reaction (PCR) based methods to detectLeishmania DNA in 38 punch biopsy samples from patients presented with suspected lesions in 2010. Both, Leishmaniagenus-specific JW11/JW12 KDNA and LITSR/L5.8S internal transcribed spacer (ITS)1 PCR assays detected 92% (35/38) of the samples whereas a KDNA assay specific forL. donovani (LdF/LdR) detected only 71% (27/38) of samples. All positive samples showed a L. donovani banding pattern upon HaeIII ITS1 PCR-restriction fragment length polymorphism analysis. PCR assay specificity was evaluated in samples containing Mycobacterium tuberculosis, Mycobacterium leprae, and human DNA, and there was no cross-amplification in JW11/JW12 and LITSR/L5.8S PCR assays. The LdF/LdR PCR assay did not amplify M. leprae or human DNA although 500 bp and 700 bp bands were observed in M. tuberculosis samples. In conclusion, it was successfully shown in this study that it is possible to diagnose Sri Lankan CL with high accuracy, to genus and species identification, using Leishmania DNA PCR assays

    A real-time PCR assay to estimate Leishmania chagasi load in its natural sand fly vector Lutzomyia longipalpis

    Get PDF
    Leishmania chagasi, transmitted mainly by Lutzomyia longipalpis sand flies, causes visceral leishmaniasis and atypical cutaneous leishmaniasis in Latin America. Successful vector control depends upon determining vectorial capacity and understanding Leishmania transmission by sand flies. As microscopic detection of Leishmania in dissected sand fly guts is laborious and time-consuming, highly specific, sensitive, rapid and robust Leishmania PCR assays have attracted epidemiologists' attention. Real-time PCR is faster than qualitative PCR and yields quantitative data amenable to statistical analyses. A highly reproducible Leishmania DNA polymerase gene-based TaqMan real-time PCR assay was adapted to quantify Leishmania in sand flies, showing intra-assay and inter-assay coefficient variations lower than 1 and 1.7%, respectively, and sensitivity to 10 pg Leishmania DNA ( approximately 120 parasites) in as much as 100 ng sand fly DNA. Data obtained for experimentally infected sand flies yielded parasite loads within the range of counts obtained by microscopy for the same sand fly cohort or that were around five times higher than microscopy counts, depending on the method used for data analysis. These results highlight the potential of quantitative PCR for Leishmania transmission studies, and the need to understand factors affecting its sensitivity and specificity

    Assessment of Risk of Exposure to Leishmania Parasites among Renal Disease Patients from a Renal Unit in a Sri Lankan Endemic Leishmaniasis Focus

    No full text
    Leishmania donovani causes both cutaneous and visceral leishmaniasis (CL and VL) in Sri Lanka, where chronic kidney disease (CKD) and kidney transplant recipients’ (KTR) geographical areas overlap. This study aimed to determine the risk of exposure to Leishmania infection among renal patients. This cross-sectional study in a renal unit assessed clinical symptoms and signs of CL and VL in recipients of blood/kidney or immunosuppressives. Sera were tested with Leishmania-specific DAT and rK-39 ELISA. There were 170 participants. A total of 84.1% (n = 143) were males (CKD: 101, KTR; 42, mean age 45) and 27 were females (females: CKD: 23, KTR: 4, mean age 39 years). Recipients of blood transfusion/s within last 2 years: 75.9% (CKD: 115, KTR: 14), on immunosuppressive therapy: 34.1% (CKD: 13, KTR: 45). Two CKD patients repeatedly showed clear positive titres (1: 12,800 and 1: 3200) with Leishmania-DAT and another two (CKD) became marginally positive with rK39-ELISA. Prevalence of anti-Leishmania antibodies: 2.4% (4/170). All four patients were clinically asymptomatic and were recipients of recent blood transfusions. Attributable risk of exposure to Leishmania infection through blood transfusions was 0.032, OR 2.99 (95% CI = 0.16 to 56.45, p = 0.47). Therefore, routine screening of kidney/blood donors and CKD and KTR patients in Sri Lanka may not be necessary
    corecore