86 research outputs found

    Quantitative determination of alliin in dried garlic cloves and products by high-performance thin-layer chromatography

    Get PDF
    Purpose: To standardize the garlic samples and its products for alliin contents.Methods: A direct high-performance thin-layer chromatographic (HPTLC) method was developed to determine alliin in Chinese (CG) and Indian garlic (IG) and two other marketed products from USA and UK, respectively. Scanning and quantification were performed at 205 nm. Furthermore, chromatography was performed on pre-coated HPTLC plates with the solvent mixture, n – hexane:ethyl acetate (29:1 v/v), as the mobile phase. In addition, the parameters suggested by International Conference on Harmonization for analytical procedures were considered to validate the proposed method.Results: The system gave a compact spot of alliin at RF = 0.19 ± 0.01 The linear regression data for the calibration plots showed a good linearity (r2 = 0.996) in the concentration range of 200 - 1600 ng. Linear regression equation was represented by Y = 1.792x + 182.855, while LOD and LOQ values were 40.42 ngband-1 and 111.72 ng.band-1, respectively. The method showed excellent accuracy with recovery of 98.20 – 99.10 % and good precision with RSD of 1 - 2.65 %.Conclusion: The proposed method is selective, sensitive and accurate for the determination of alliin in garlic and its products. It is also evident from the results obtained that raw Indian garlic has higher alliin content than Chinese garlic.Keywords: Garlic, HPTLC, Alliin, Hypercholesteremia, Quantificatio

    Studies on wound healing activity of some Euphorbia species on experimental rats

    Get PDF
    Background: Plants of Euphorbiaceae are used in folkloric medicines in variety of ailments and well known for chemical diversity of their isoprenoid constituents. This study was carried out to explore the preliminary wound healing potential of four Euphorbia species (E. consorbina 1, E. consorbina 2, E. inarticulata, E. balsamifera and E. schimperi).Materials and Methods: Excision wound surface of the animals were topically treated with ethyl acetate and methanol extracts of plants at a dose of 400 mg/kg body weight for twenty days. Povidone-iodine ointment was used as a reference drug. Wound contraction measurement and period of epithelialization were used to assess the effect of plants extracts on wound repairing.Results: The groups treated with methanol extracts of E. balsamifera and E. schimperi showed profound effects, high rate of wound contraction (100%) and decrease in epithelization period 19.00±0.40 and 18.50±0.64 respectively, followed by methanol extracts of E. consorbina 2, ethyl acetate extract of E. inarticulata and ethyl acetate extracts of E. consorbina 2 which showed significant (P <0.001) wound contraction and decrease in epithelization period. Conversely ethyl acetate extract of E. consorbina 1, E. balsamifera and E. schimperi and methanol extract of E. Consorbina 1 and E. Inarticulata treated groups was not showing significant wound healing. Methanol extracts of E. balsamifera and E. schimperi were also tested for their safety margin and found safe up to dose of 2000mg/kg body weight.Conclusion: Topical application of methanol extracts of E. balsamifera and E. schimperi have potential wound healing activity which is identical with standard drug Povidone-iodine.Keywords: Wound healing, excision wounds, Euphorbia, extract

    Assessment of antimalarial activity against Plasmodium falciparum and phytochemical screening of some Yemeni medicinal plants

    Get PDF
    Developing countries, where malaria is one of the most prevalent diseases, still rely on traditional medicine as a source for the treatment of this disease. In the present study, six selected plants (Acalypha fruticosa, Azadirachta indica, Cissus rotundifolia, Echium rauwalfii, Dendrosicyos socotrana and Boswellia elongata) commonly used in Yemen by traditional healers for the treatment of malaria as well as other diseases, were collected from different localities of Yemen, dried and extracted with methanol and water successfully. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of Plasmodium falciparum. The selectivity parameters to evaluate the efficacy of these medicinal plants were measured by in vitro micro test (Mark III) according to World Health Organization (WHO) 1996 & WHO 2001 protocols of antimalarial drug tests. Among the investigated 12 extracts, three were found to have significant antiplasmodial activity with IC50 values less than 4 µg/ml, namely the water extracts of A. fruticosa, A. indica and D. socotrana. Six extracts showed moderate activity with IC50 values ranging from 10 to 30 µg/ml and three appeared to be inactive with IC50 values more than 30 µg/ml. In addition, preliminary phytochemical screening of the methanolic and aqueous extracts indicated the presence of saponins, tannins, flavonoids, terpenoids, polysaccharides and peptides

    EVALUATION OF ACUTE TOXICITY AND ANTI-INFLAMMATORY EFFECTS OF BACCHAROIDES SCHIMPERI (DC.) IN EXPERIMENTAL ANIMALS

    Get PDF
    Background: Steroidal and non-steroidal anti-inflammatory drugs are most commonly used to treat inflammation, and shown to have severe side effects. In this study, we aimed at evaluating the anti-inflammatory and acute toxicity effects of Baccharoides schimperi (DC.) in order to get new anti-inflammatory agents of natural origin. Materials and methods: The aerial part of the plant was dried under shade, ground and extracted with 96% alcohol (BSE). It was further fractionated in sequence to n-hexane (BSH), chloroform (BSC) and methanol (BSM) soluble fractions. Acute toxicity was evaluated by oral administration of plant and hind paw induced-edema method in rats was used for the anti-inflammatory evaluation. Results: The BSE was found safe up to the dose level of 3 g/kg b.w. and showed LD50 value 7.250 g/kg body weight (b.w.) in mice. BSE showed significant anti-inflammatory effect (62.91%) at 500 mg/kg b.w. Further the n-hexane, chloroform and methanol fractions of BSE were tested for anti-inflammatory activity. The n-hexane fraction (BSH) exhibits significant activity (64.87%) at 400 mg/kg b.w. The methanol fraction (BSM) showed dose dependent activity, highest activity (60.42%) was observed at higher dose 400 of mg/kg b.w. In chloroform fraction (BSC) no significant activity was observed. Conclusion: The results of the study revealed that the plant is safe to the experimental model and recommended as a potential source of anti-inflammatory agent

    Boosted Antioxidant Effect Using a Combinatory Approach with Essential Oils from Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba: Mixture Design Optimization

    Get PDF
    Several studies have demonstrated the possible synergistic effect as an effective strategy to boost the bioactivity of essential oils. Using this framework, this study was conducted to effectively establish the ideal combination of six essential oils from different plants (Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba) that would express the best antioxidant activity. Each mixture was optimized using a mixture design approach to generate the most effective blend. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging method was used as a reference method to assess the antioxidant activity. Each essential oil’s composition was identified using the GC/MS method. The single essential oil activities demonstrated variable antioxidant effects, and following the mixture design approach, the optimal antioxidant blend was revealed, as two mixtures demonstrated the best antiradical activity with 79.46% obtained with the mixture of O. majorana (28%) and M. spicata (71%) and 78.8% obtained with the mixture O. compactum (64%), O. majorana (13%), and T. serpyllum (21%). This study proposes a practical way to elaborate mixtures in the search for a boosting effect that can be oriented for the food or pharmaceutical industry

    Boosted Antioxidant Effect Using a Combinatory Approach with Essential Oils from Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba: Mixture Design Optimization

    Get PDF
    Several studies have demonstrated the possible synergistic effect as an effective strategy to boost the bioactivity of essential oils. Using this framework, this study was conducted to effectively establish the ideal combination of six essential oils from different plants (Origanum compactum, Origanum majorana, Thymus serpyllum, Mentha spicata, Myrtus communis, and Artemisia herba-alba) that would express the best antioxidant activity. Each mixture was optimized using a mixture design approach to generate the most effective blend. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging method was used as a reference method to assess the antioxidant activity. Each essential oil’s composition was identified using the GC/MS method. The single essential oil activities demonstrated variable antioxidant effects, and following the mixture design approach, the optimal antioxidant blend was revealed, as two mixtures demonstrated the best antiradical activity with 79.46% obtained with the mixture of O. majorana (28%) and M. spicata (71%) and 78.8% obtained with the mixture O. compactum (64%), O. majorana (13%), and T. serpyllum (21%). This study proposes a practical way to elaborate mixtures in the search for a boosting effect that can be oriented for the food or pharmaceutical industry

    Antimicrobial, Antioxidant and Cytotoxic Activities and Phytochemical Screening of Some Yemeni Medicinal Plants

    Get PDF
    The traditional medicine still plays an important role in the primary health care in Yemen. The current study represents the investigation of 16 selected plants, which were collected from different localities of Yemen. The plants were dried and extracted with two different solvents (methanol and hot water) to yield 34 crude extracts. The obtained extracts were tested for their antimicrobial activity against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains using agar diffusion method, for their antioxidant activity using scavenging activity of DPPH radical method and for their cytotoxic activity using the neutral red uptake assay. In addition, a phytochemical screening of the methanolic extracts was done. Antibacterial activity was shown only against Gram-positive bacteria, among them multiresistant bacteria. The highest antimicrobial activity was exhibited by the methanolic extracts of Acalypha fruticosa, Centaurea pseudosinaica, Dodonaea viscosa, Jatropha variegata, Lippia citriodora, Plectranthus hadiensis, Tragia pungens and Verbascum bottae. Six methanolic extracts especially those of A. fruticosa, Actiniopteris semiflabellata, D. viscosa, P. hadiensis, T. pungens and V. bottae showed high free radical scavenging activity. Moreover, remarkable cytotoxic activity against FL-cells was found for the methanolic extracts of A. fruticosa, Iris albicans, L. citriodora and T. pungens. The phytochemical screening demonstrated the presence of different types of compounds like flavonoids, terpenoids and others, which could be responsible for the obtained activities

    The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro

    Get PDF
    The main objective of the current study was to determine the physicochemical properties, antioxidant activities, and α-glucosidase and α-amylase inhibition of apple vinegar produced by artisanal and industrial methods. Apple vinegar samples were analyzed to identify their electrical conductivity, pH, titratable acidity, total dry matter, Brix, density, mineral elements, polyphenols, flavonoids, and vitamin C. The antioxidant activity of apple vinegar samples was evaluated using two tests, total antioxidant capacity (TAC) and DPPH radical scavenging activity. Finally, we determined α-glucosidase and α-amylase inhibitory activities of artisanal and industrial apple vinegar. The results showed the following values: pH (3.69–3.19); electrical conductivity (2.81–2.79 mS/cm); titratable acidity (3.6–5.4); ash (4.61–2.90); °Brix (6.37–5.2); density (1.02476–1.02012), respectively, for artisanal apple vinegar and industrial apple vinegar. Concerning mineral elements, potassium was the most predominant element followed by sodium, magnesium, and calcium. Concerning bioactive compounds (polyphenols, flavonoids, and vitamin C), the apple vinegar produced by the artisanal method was the richest sample in terms of bioactive compounds and had the highest α-glucosidase and α-amylase inhibition. The findings of this study showed that the quality and biological activities of artisanal apple vinegar were more important than industrial apple vinegar

    The Nutritional and Antioxidant Potential of Artisanal and Industrial Apple Vinegars and Their Ability to Inhibit Key Enzymes Related to Type 2 Diabetes In Vitro

    Get PDF
    The main objective of the current study was to determine the physicochemical properties, antioxidant activities, and α-glucosidase and α-amylase inhibition of apple vinegar produced by artisanal and industrial methods. Apple vinegar samples were analyzed to identify their electrical conductivity, pH, titratable acidity, total dry matter, Brix, density, mineral elements, polyphenols, flavonoids, and vitamin C. The antioxidant activity of apple vinegar samples was evaluated using two tests, total antioxidant capacity (TAC) and DPPH radical scavenging activity. Finally, we determined α-glucosidase and α-amylase inhibitory activities of artisanal and industrial apple vinegar. The results showed the following values: pH (3.69–3.19); electrical conductivity (2.81–2.79 mS/cm); titratable acidity (3.6–5.4); ash (4.61–2.90); °Brix (6.37–5.2); density (1.02476–1.02012), respectively, for artisanal apple vinegar and industrial apple vinegar. Concerning mineral elements, potassium was the most predominant element followed by sodium, magnesium, and calcium. Concerning bioactive compounds (polyphenols, flavonoids, and vitamin C), the apple vinegar produced by the artisanal method was the richest sample in terms of bioactive compounds and had the highest α-glucosidase and α-amylase inhibition. The findings of this study showed that the quality and biological activities of artisanal apple vinegar were more important than industrial apple vinegar
    • …
    corecore