42 research outputs found

    Out-of-equilibrium evolution of scalar fields in FRW cosmology: renormalization and numerical simulations

    Get PDF
    We present a renormalized computational framework for the evolution of a self-interacting scalar field (inflaton) and its quantum fluctuations in an FRW background geometry. We include a coupling of the field to the Ricci scalar with a general coupling parameter ξ\xi. We take into account the classical and quantum back reactions, i.e., we consider the the dynamical evolution of the cosmic scale factor. We perform, in the one-loop and in the large-N approximation, the renormalization of the equation of motion for the inflaton field, and of its energy momentum tensor. Our formalism is based on a perturbative expansion for the mode functions, and uses dimensional regularization. The renormalization procedure is manifestly covariant and the counter terms are independent of the initial state. Some shortcomings in the renormalization of the energy-momentum tensor in an earlier publication are corrected. We avoid the occurence of initial singularities by constructing a suitable class of initial states. The formalism is implemented numerically and we present some results for the evolution in the post-inflationary preheating era.Comment: 44 pages, uses latexsym, 6 pages with 11 figures in a .ps fil

    Vacuum fluctuations and topological Casimir effect in Friedmann-Robertson-Walker cosmologies with compact dimensions

    Full text link
    We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massless scalar field with general curvature coupling parameter in spatially flat Friedmann-Robertson-Walker universes with an arbitrary number of toroidally compactified dimensions. The topological parts in the expectation values are explicitly extracted and in this way the renormalization is reduced to that for the model with trivial topology. In the limit when the comoving lengths of the compact dimensions are very short compared to the Hubble length, the topological parts coincide with those for a conformal coupling and they are related to the corresponding quantities in the flat spacetime by standard conformal transformation. In the opposite limit of large comoving lengths of the compact dimensions, in dependence of the curvature coupling parameter, two regimes are realized with monotonic or oscillatory behavior of the vacuum expectation values. In the monotonic regime and for nonconformally and nonminimally coupled fields the vacuum stresses are isotropic and the equation of state for the topological parts in the energy density and pressures is of barotropic type. In the oscillatory regime, the amplitude of the oscillations for the topological part in the expectation value of the field squared can be either decreasing or increasing with time, whereas for the energy-momentum tensor the oscillations are damping.Comment: 20 pages, 2 figure

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Parity nonconservation in deuteron photoreactions

    Full text link
    We calculate the asymmetries in parity nonconserving deuteron photodisintegration due to circularly polarized photons gamma+d to n+p with the photon laboratory energy ranging from the threshold up to 10 MeV and the radiative capture of thermal polarized neutrons by protons n+p to gamma+d. We use the leading order electromagnetic Hamiltonian neglecting the smaller nuclear exchange currents. Comparative calculations are done by using the Reid93 and Argonne v18 potentials for the strong interaction and the DDH and FCDH "best" values for the weak couplings in a weak one-meson exchange potential. A weak NDelta transition potential is used to incorporate also the Delta(1232)-isobar excitation in the coupled-channels formalism.Comment: 14 pages, 13 figures (18 eps files), LaTeX2

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Full text link
    corecore