495 research outputs found
Recommended from our members
2023 Supplement to Donald Earl Childress III, Michael D. Ramsey & Christopher A. Whytock, Transnational Law and Practice (2d ed. 2021)
Grassland invaders and their mycorrhizal symbionts:a study across climate and invasion gradients
Controlled experiments show that arbuscular mycorrhizal fungi (AMF) can increase competitiveness of exotic plants, potentially increasing invasion success. We surveyed AMF abundance and community composition in Centaurea stoebe and Potentilla recta invasions in the western USA to assess whether patterns were consistent with mycorrhizal-mediated invasions. We asked whether (1) AMF abundance and community composition differ between native and exotic forbs, (2) associations between native plants and AMF shift with invading exotic plants, and (3) AMF abundance and/or community composition differ in areas where exotic plants are highly invasive and in areas where they are not. We collected soil and roots from invaded and native forb communities along invasion gradients and in regions with different invasion densities. We used AMF root colonization as a measure of AMF abundance and characterized AMF communities in roots using 454-sequencing of the LSU-rDNA region. All plants were highly colonized (>60%), but exotic forbs tended to be more colonized than natives (P < 0.001). We identified 30 AMF operational taxonomic units (OTUs) across sites, and community composition was best predicted by abiotic factors (soil texture, pH). Two OTUs in the genera Glomus and Rhizophagus dominated in most communities, and their dominance increased with invasion density (r = 0.57, P = 0.010), while overall OTU richness decreased with invasion density (r = −0.61, P = 0.006). Samples along P. recta invasion gradients revealed small and reciprocal shifts in AMF communities with >45% fungal OTUs shared between neighboring native and P. recta plants. Overall, we observed significant, but modest, differences in AMF colonization and communities between co-occurring exotic and native forbs and among exotic forbs across regions that differ in invasion pressure. While experimental manipulations are required to assess functional consequences, the observed patterns are not consistent with those expected from strong mycorrhizal-mediated invasions
The RESET tephra database and associated analytical tools
An open-access database has been set up to support the research project study- ing the ‘Response of Humans to Abrupt Environmental Transitions’ (RESET). The main methodology underlying this project was to use tephra layers to tie together and synchronise the chronologies of stratigraphic records at archaeological and envi- ronmental sites. The database has information on occurrences, and chemical compo- sitions, of glass shards from tephra and cryptotephra deposits found across Europe. The data includes both information from the RESET project itself and from the published literature. With over 12,000 major element analyses and over 3000 trace element analyses on glass shards, relevant to 80 late Quaternary eruptions, the RESET project has generated an important archive of data. When added to the published information, the database described here has a total of more than 22,000 major element analyses and nearly 4000 trace element analyses on glass from over 240 eruptions. In addition to the database and its associated data, new methods of data analysis for assessing correlations have been developed as part of the project. In particular an approach using multi-dimensional kernel density estimates to evaluate the likelihood of tephra compositions matching is described here and tested on data generated as part of the RESET project.</p
Flavored Quantum Boltzmann Equations
We derive from first principles, using non-equilibrium field theory, the
quantum Boltzmann equations that describe the dynamics of flavor oscillations,
collisions, and a time-dependent mass matrix in the early universe. Working to
leading non-trivial order in ratios of relevant time scales, we study in detail
a toy model for weak scale baryogenesis: two scalar species that mix through a
slowly varying time-dependent and CP-violating mass matrix, and interact with a
thermal bath. This model clearly illustrates how the CP asymmetry arises
through coherent flavor oscillations in a non-trivial background. We solve the
Boltzmann equations numerically for the density matrices, investigating the
impact of collisions in various regimes.Comment: 41 pages, 7 figures. v2: references added, minor corrections and
clarification
Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training
The purpose of this monitoring study was to investigate how alterations in training affect changes in force-related characteristics and weightlifting performance. Subjects: Seven competitive weightlifters participated in the study. Methods: The weightlifters performed a block style periodized plan across 20 weeks. Force plate data from the isometric mid-thigh pull and static jumps with 0 kg, 11 kg, and 20 kg were collected near the end of each training block (weeks 1, 6, 10, 13, 17, and 20). Weightlifting performance was measured at weeks 0, 7, 11, and 20. Results: Very strong correlations were noted between weightlifting performances and isometric rate of force development (RFD), isometric peak force (PF), peak power (PP), and jump height (JH). Men responded in a more predictable manner than the women. During periods of higher training volume, RFD was depressed to a greater extent than PF. JH at 20 kg responded in a manner reflecting the expected fatigue response more so than JH at 0 kg and 11 kg. Conclusions: PF appears to have been more resistant to volume alterations than RFD and JH at 20 kg. RFD and JH at 20 kg appear to be superior monitoring metrics due to their “sensitivity.
Reconciling the Greenland ice-core and radiocarbon timescales through the Laschamp geomagnetic excursion
Cosmogenic radionuclides, such as 10Be and 14C, share a common production signal, with their formation in the Earth's upper atmosphere modulated by changes to the geomagnetic field, as well as variations in the intensity of the solar wind. Here, we use this common production signal to compare between the radiocarbon (IntCal) and Greenland ice-core (GICC05) timescales, utilising the most pronounced cosmogenic production peak of the last 100,000 years – that associated with the Laschamp geomagnetic excursion circa 41,000 years ago. We present 54 new 14C measurements from a peat core (‘TP-2005’) from Tenaghi Philippon, NE Greece, contiguously spanning between circa 47,300 and 39,600 cal. BP, demonstrating a distinctive tripartite structure in the build up to the principal Laschamp production maximum that is not present in the consensus IntCal13 calibration curve. This is the first time that a continuous, non-reservoir corrected 14C dataset has been generated over such a long time span for this, the oldest portion of the radiocarbon timescale. This period is critical for both palaeoenvironmental and archaeological applications, with the replacement of Neanderthals by anatomically modern humans in Europe around this time. By placing our Tenaghi Philippon 14C dataset on to the Hulu Cave U-series timescale of Cheng et al. (2018) via Bayesian statistical modelling, the comparison of TP-2005 14C with Greenland 10Be fluxes also implicitly relates the underlying U-series and GICC05 timescales themselves. This comparison suggests that whilst these two timescales are broadly coherent, the IntCal13 timescale contains erroneous structure circa 40,000 cal. BP
- …