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Abstract:  36 

  37 

          Cosmogenic radionuclides, such as 10Be and 14C, share a common production signal, 38 

with their formation in the Earth’s upper atmosphere modulated by changes to the geomagnetic 39 

field, as well as variations in the intensity of the solar wind. Here, we use this common 40 

production signal to compare between the radiocarbon (IntCal) and Greenland ice-core  41 

(GICC05) timescales, utilising the most pronounced cosmogenic production peak of the last 42 

100,000 years – that associated with the Laschamp geomagnetic excursion circa 41,000 years 43 

ago. We present 54 new 14C measurements from a peat core (‘TP-2005’) from Tenaghi 44 

Philippon, NE Greece, contiguously spanning between circa 47,300 and 39,600 cal. BP, 45 

demonstrating a distinctive tripartite structure in the build up to the principal Laschamp 46 

production maximum that is not present in the consensus IntCal13 calibration curve. This is 47 

the first time that a continuous, non-reservoir corrected 14C dataset has been generated over 48 

such a long time span for this, the oldest portion of the radiocarbon timescale. This period is 49 

critical for both palaeoenvironmental and archaeological applications, with the replacement of 50 

Neanderthals by anatomically modern humans in Europe around this time. By placing our 51 

Tenaghi Philippon 14C dataset on to the Hulu Cave U-series timescale of Cheng et al. (2018) 52 

via Bayesian statistical modelling, the comparison of TP-2005 14C with Greenland 10Be fluxes 53 

also implicitly relates the underlying U-series and GICC05 timescales themselves. This 54 

comparison suggests that whilst these two timescales are broadly coherent, the IntCal13 55 

timescale is likely some ~1000 years too old circa 40,000 cal. BP.   56 

  57 

     58 

1. Introduction  59 

  60 
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          Among the most pressing questions in palaeoenvironmental research today is the reliable 61 

identification of synchronies or asynchronies of past climatic and environmental changes 62 

across the globe. A fundamental problem in identifying such temporal relationships in 63 

palaeorecords, however, is an inability to reliably compare inter-regional records beyond the 64 

limits of chronological uncertainty.  65 

          Arguably, the best and most-widely cited record of palaeoclimatic change – the key 66 

global reference ‘type site’ – is that provided by the Greenland ice-cores, due to their highly 67 

resolved suite of multi-proxy palaeoenvironmental data (NGRIP members, 2004; Steffensen et 68 

al., 2008), and their annual resolution, layer-counted chronology (Andersen et al., 2006; 69 

Rasmussen et al., 2006; Svensson et al., 2008). Conversely, the most utilised geochronological 70 

technique applied to late Quaternary palaeoenvironmental (and archaeological) sites elsewhere 71 

in the world is provided by radiocarbon (14C) dating (Brauer et al., 2014). However, in order to 72 

compare data between the two timescales, one must assume that the respective 14C and icecore 73 

layer-counted chronologies are consistent – an assumption that must undoubtedly incorporate 74 

uncertainties (Adolphi and Muscheler, 2016).  75 

          Here, we utilise the common production signal of the cosmogenic radionuclides 10Be 76 

(beryllium-10) and 14C (radiocarbon) to link together the Greenland ice-core and radiocarbon 77 

timescales for the oldest ~10,000 years of the radiocarbon timescale (i.e. the last ~50,000 78 

years), taking advantage of the most pronounced cosmogenic production peak of the last 79 

100,000 years – that associated with the Laschamp geomagnetic excursion circa 41,000 years 80 

ago.  81 

  82 

  83 

1.1 Cosmogenic radionuclides and the Laschamp geomagnetic excursion  84 

  85 
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          Cosmogenic radionuclides, such as 10Be and 14C, are formed in the Earth’s upper 86 

atmosphere through the interaction of incoming high-energy cosmic rays with target nuclides 87 

(Lal and Peters, 1967). The cosmic ray flux is modulated by both the shielding effect of the  88 

Earth’s magnetic field and the solar-induced interplanetary magnetic field (the ‘solar wind’). 89 

The lower the strength of either the geomagnetic field or solar wind, the deflection of incoming 90 

cosmic rays is reduced, and the production of cosmogenic radionuclides is therefore greater 91 

(Elsasser et al., 1956).  92 

          The geomagnetic field exhibits long-term secular variation, including major reversals of 93 

the Earth’s magnetic (dipole) field between normal and reversed configurations, which occur 94 

during periods of progressive decay in the Earth’s dipole moment (Cox, 1969; Valet and 95 

Meynadier, 1993). Additionally, shorter-term (<104 years) ‘stability crises’ occur whereby the 96 

intensity of the geomagnetic field decreases more or less dramatically, but the field does not 97 

undergo a long-term reversal. These may coincide with geomagnetic excursions – periods of 98 

distorted dipole geometry when the virtual geomagnetic poles (VGPs) move away from the 99 

area of normal high-latitude secular variation – or even short-term (102-103 years) complete 100 

reversals (where VGPs temporarily migrate to higher latitudes of the opposite hemisphere) 101 

(Nowaczyk et al., 2012). The most prominent of these geomagnetic excursions over the past 102 

100,000 years is known as the ‘Laschamp event’, dated to circa 41,000 years ago (Bonhommet 103 

and Babkine, 1967; Guillou et al., 2004; Singer et al., 2009). This event is characterised by a 104 

short-term full reversal of the geomagnetic field (Nowaczyk et al., 2012) and the lowest 105 

geomagnetic field intensities of the past 100,000 years, falling to approximately 10% of today’s 106 

value (Laj et al., 2000; Nowaczyk et al., 2013).  107 

          Such geomagnetic events can provide global, temporally synchronous signals in 108 

palaeoenvironmental archives, observable directly in records of relative palaeointensity, as well 109 

as in records of cosmogenic nuclides (including 10Be and 14C). Thus, it is theoretically possible 110 
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to link palaeoenvironmental archives using these isochronous signals (Brauer et al., 2014). 10Be 111 

has a short (1-2 year) atmospheric residence time (McHargue and Damon, 1991), providing an 112 

excellent record of past cosmogenic nuclide production variation, and has been measured 113 

directly in the Greenland ice-cores (Yiou et al., 1997; Muscheler et al. 2004) (unlike 14C, which 114 

is too low in abundance to detect within the ice). 14C provides a less direct production marker, 115 

however, because of its incorporation into the global carbon cycle system and consequent 116 

exchanges between the global carbon reservoirs, thus complicating the intercomparison of such 117 

records.  118 

  119 

  120 

1.2 The Greenland ice-core chronology   121 

    122 

          The Greenland ice-core chronology ‘GICC05’ is the most recent timescale applied to the  123 

Greenland ice-cores, tying together the GRIP (Johnsen et al. 1992), GISP2 (Grootes et al., 124 

1993), NGRIP (NGRIP members, 2004) and NEEM (NEEM Community Members, 2013)  125 

records (Seierstad et al., 2014). For the entire time period covered by the 14C dating technique, 126 

i.e., the last circa 50,000 years, GICC05 is based on direct counting of the annual layers within 127 

the ice (Andersen et al., 2006; Rasmussen et al., 2006; Svensson et al., 2008; Brauer et al.,  128 

2014). The uncertainty on the timescale is based upon the ‘maximum counting error’ (MCE) 129 

concept, whereby each uncertain layer is counted as ½ ± ½ year and added linearly. Thus, 130 

throughout the Last Glacial period, the MCE on GICC05 amounts to approximately 5%. It 131 

should be noted that GICC05 uses the notation ‘b2k’ – i.e., ‘calendar years before its datum, 132 

AD 2000’ – whereas herein we convert this to years ‘BP’ (before present, AD 1950), enabling 133 

more direct comparison with the Hulu Cave uranium (U-)series and IntCal13 timescales 134 

(below).  135 
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          Since its introduction in 2005, GICC05 has now been utilised for over a decade, 136 

demonstrating the robustness of the chronology, though there have been recent suggestions of 137 

small scale errors. For example, Sigl et al. (2015) presented evidence, making use of the 138 

distinctive ‘AD 775 and 994 events’ recorded as both 10Be and 14C production spikes, as well 139 

as using tephra marker horizons, that the ice-core chronology is 7 years too old by the late first 140 

millennium AD. Over a longer time range, Buizert et al. (2015) presented evidence that 141 

GICC05, on average, misses 6.3 out of every 1,000 annual layers. This conclusion is based 142 

upon comparison of the respective oxygen isotope ( 18O) records of the NGRIP ice-core and 143 

Hulu Cave (China) speleothem, which is independently U-series dated. However, this 144 

comparison of 18O records assumes synchroneity of the respective palaeoclimatic signals – 145 

an assumption that may not necessarily hold true (Lane et al., 2013; Brauer et al., 2014).  146 

  147 

  148 

1.3 Radiocarbon dating and the IntCal timescale  149 

  150 

          In order to generate meaningful ages from the 14C dating method, a calibration stage is 151 

required since the concentration of 14C (relative to stable 12C and 13C) in the environment 152 

changes through time. This is the result of both the variations in production rate (Lal and Peters, 153 

1967) outlined above and carbon cycle effects, which alter the global distribution of relatively 154 

older or younger carbon sources between the respective reservoirs of Earth’s carbon cycle 155 

system through time (Broecker et al., 1960; Siegenthaler et al., 1980).  156 

          Calibration involves the comparison of samples’ raw isotopic measurements with the 157 

internationally ratified, consensus radiocarbon calibration curve ‘IntCal13’ (Reimer et al.,  158 

2013), which itself is comprised of ‘known age’ material from a variety of palaeo-archives. For 159 

the last ~12,500 years, the IntCal curve is composed of independently dendro-chronologically 160 
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dated wood. Previous research (Muscheler et al., 2004, 2008, 2014a; Adolphi and Muscheler, 161 

2016) has utilised this high-resolution, continuous record of past variation in atmospheric 14C 162 

concentrations ( 14C) to tie this most recent period of the IntCal timescale to the 10Be signal in 163 

Greenland. These authors found an offset of approximately 65 years between GICC05 and 164 

IntCal during the Preboreal (i.e. circa 12,500 to 10,000 years ago), with GICC05 seemingly 165 

including a small over-count – an offset consistent in scale with that proposed by Sigl et al. 166 

(2015). Since this latest portion of the 14C calibration curve is composed of robustly 167 

dendrochronologically dated records, Muscheler et al. (2008) attributed this 65 year offset to 168 

uncertainties in the ice-core layer counting.   169 

          Further back in time, through to the methodological limit of radiocarbon dating (circa 170 

50,000 years ago), however, the 14C calibration curve is less certain. The central archive for 171 

this earlier period is that provided by plant macrofossils picked from the annually laminated 172 

sediments of Lake Suigetsu, Japan (Staff et al., 2011; Bronk Ramsey et al., 2012). Additional 173 

data are provided by speleothems (Hoffmann et al., 2010; Southon et al., 2012), marine corals  174 

(e.g. Fairbanks et al., 2005), and foraminifera from marine sediment cores (e.g. Hughen et al., 175 

2006), all of which incorporate (marine- or dead carbon) ‘reservoir effects’ that require 176 

correction and thereby introduce additional uncertainties. These reservoir effects would also be 177 

expected to ‘smooth’ the atmospheric 14C signal, making comparison to 10Be records more 178 

complicated. Unlike these latter records, the Lake Suigetsu data provide a direct record of 179 

atmospheric 14C, and have previously been used to compare to both records of 180 

palaeomagnetic intensity (e.g. Nowaczyk et al., 2013) and to 10Be in the Greenland ice-cores 181 

(e.g. Bronk Ramsey et al., 2012; Muscheler et al., 2014b). However, the Lake Suigetsu data are 182 

necessarily discontinuous – limited by the stochastic finds of plant macrofossil remains in the 183 

sediment profile – as well as being potentially less reliable due to the methodological problems 184 

associated with dating such small samples close to the radiocarbon detection limit (Muscheler 185 
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et al., 2014b). As with the Greenland ice-cores (above), the Lake Suigetsu dataset also has 186 

relatively large cumulative counting uncertainties by ~40,000 years BP.  187 

          The promise of more reliable, continuous data for this older time period comes from 188 

floating tree-ring sequences, most notably long-lived New Zealand kauri (Agathis australis) 189 

(Turney et al., 2010, 2016; Hogg et al., 2013). Such records are limited in duration, however, 190 

by the up to ~2,000 year life-spans of individual trees, limiting their utility for comparison to 191 

the Greenland 10Be record to relatively short periods of time (Muscheler et al., 2014b; Turney 192 

et al., 2016). Recently, Muscheler et al. (2014b) presented such a comparison, arguing that the 193 

Greenland ice-core and 14C (IntCal) timescales were discordant circa 40,000 years ago, with 194 

the calibrated 14C timescale apparently 1,200 years too old. This would be a highly significant 195 

finding, if true, since it compromises the inter-comparison of 14C-dated palaeoenvironmental 196 

records with those dated by other methods. It also directly affects the interpretation of 14C data 197 

through this time period across other disciplines, such as archaeological applications, with the 198 

replacement of Neanderthals by anatomically modern humans in Europe around this time 199 

(Higham et al., 2014). However, the study of Muscheler et al. (2014b) was necessarily limited 200 

to a short record (1,350 years), minimising the 14C structure that could be compared with the 201 

equivalent 10Be-inferred signal, and thereby reducing the reliability of the correlation drawn.           202 

Recently, Cheng et al. (2018) have provided an extended record from Hulu Cave (China) based 203 

upon radiocarbon data from two new speleothems (‘MSD’ and ‘MSL’), adding to the 204 

previously published dataset of Southon et al. (2012) from speleothem ‘H82’ which covered 205 

the period ~10.7 to 26.9 ka BP. As with the Lake Suigetsu dataset (above), this new Hulu Cave 206 

record now extends across the entirety of the radiocarbon dating method. The latter has the 207 

advantage of a highly precise U-series derived calendar age scale, and will provide the central 208 

archive of the next iteration of the consensus calibration curve, IntCal (Reimer et al., in prep., 209 

Radiocarbon).  210 
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          As noted above, speleothems incorporate a reservoir effect, which requires correction, 211 

and therefore introduces further uncertainty into the 14C values. Southon et al. (2012) and 212 

Cheng et al. (2018) both describe the “unusually small and stable” (450 ± 70 14C years) ‘dead 213 

carbon fraction’ (DCF) registered in these Hulu Cave speleothems, which makes them 214 

particularly attractive for radiocarbon calibration purposes. However, it would seem that this 215 

small and stable DCF is a result of the unique geological setting of the site, such that the ‘inbuilt 216 

age’ recorded by the speleothem dripwater is more of a ‘soil reservoir effect’, rather than a 217 

DCF, sensu stricto. The consequence of this is the favourable low and stable ‘DCF’; however, 218 

the pay-off is that the atmospheric 14C signal is effectively smoothed at this resolution (~450 219 

years), meaning that higher frequency signal is consequently lost.  220 

          Thus, there are both strengths and weaknesses in all of the aforementioned calibration 221 

records. To add to this current state of knowledge, therefore, we herein exploit new 14C data 222 

from a continuous peat sequence from Greece, extending over a significantly longer time period 223 

(circa 47,300 to 39,600 cal. BP) than the kauri dataset utilised by Muscheler et al. (2014b). This 224 

enables us to use the entirety of the 14C signal associated with the build-up to- and peak of 225 

the Laschamp excursion to enable more robust comparison of the calibrated 14C and Greenland 226 

ice-core time scales. Our dataset also provides a direct record of atmospheric 14C concentration, 227 

unlike the Hulu Cave speleothems, and provides continuous material for 14C dating, unlike the 228 

stochastic Lake Suigetsu dataset, without the issues of small sample sizes associated with the 229 

latter record. The drawback of our new dataset, however, is the lack of independent chronology, 230 

which we necessarily need to obtain through Bayesian statistical modelling (section 3.2, 231 

below).  232 

  233 

  234 
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2. Study site  235 

  236 

          Tenaghi Philippon is situated in the Philippi peatland within the Drama Basin of NE 237 

Greece (Fig. 1). Since its discovery and initial exploitation in the 1960s, the site has become 238 

widely recognised as harbouring one of the best terrestrial archives of Quaternary climatic and 239 

environmental change in Europe (Wijmstra, 1969; Tzedakis et al., 2006; Pross et al., 2015 and 240 

refs. therein). Scientific drilling campaigns at the site have yielded a peat-dominated sequence 241 

that extends to a depth of nearly 200 m and covers the last ~1.35 Ma continuously. This 242 

sequence represents an extremely sensitive recorder of rapid climatic change both during 243 

glacial and interglacial boundary conditions, which is ascribed to the site’s intermediate 244 

position between higher-latitude (i.e., North Atlantic Oscillation- and Siberian Highinfluenced) 245 

and lower-latitude (monsoonally influenced) climatic regimes, its intramontane setting, and its 246 

proximity to the glacial refugia of thermophilous plant taxa (Pross et al., 2009, 2015).   247 

  In 2005, a new, 60 m long core (‘TP-2005’; 40°58’24” N, 24°13’26” E, 40 m asl) was  248 

recovered from Tenaghi Philippon (Pross et al., 2007). The core consists primarily of fen peat 249 

and is believed to represent continuous accumulation throughout the last circa 310 kyrs 250 

(Fletcher et al., 2013). A previous study (Müller et al., 2011) presented 20 accelerator mass 251 

spectrometry (AMS) 14C dates, spanning the majority of the approximately 50,000 year 14C 252 

dating time period, from the uppermost 15.28 m of the TP-2005 core (Table S1). Additionally, 253 

three tephra layers have been identified at 7.61 m, 9.70 m and 12.64-12.87 m core depths, and 254 

respectively geochemically correlated to the Y-2 tephra (resulting from the Cape Riva eruption 255 

of Santorini), Y-3 tephra (resulting from an eruption from the Campi Flegrei), and Y-5 tephra  256 

(from the regionally widespread Campanian Ignimbrite eruption, also from the Campi Flegrei) 257 

(Müller et al., 2011; Albert et al., 2015 Pross et al., 2015; Wulf et al., 2018). Accompanying 258 
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palaeoenvironmental data are provided by a centennial resolution pollen record spanning 259 

Marine Isotope Stages (MIS) 4 to 2 (Müller et al., 2011).  260 

  261 

  262 

3. Methods  263 

  264 

3.1 Radiocarbon dating  265 

  266 

          Contiguous peat sub-samples (maximum 5 cm thick) from Tenaghi Philippon core 267 

‘TP2005’ were taken from 12.87 to 14.80 cm depth – i.e. spanning the time period immediately 268 

preceding the deposition of the visible Campanian Ignimbrite (C.I.) tephra, back to the 269 

methodological limit of 14C dating (circa 50,000 cal. BP). Each sub-sample was physically 270 

homogenised prior to a standard acid-base-acid (ABA) chemical pre-treatment for radiocarbon 271 

dating, following the method of Brock et al. (2010). The three main stages of this process 272 

(successive acid-, base-, and acid washes) are similar across most radiocarbon laboratories and 273 

are respectively intended to remove: (i) sedimentary- and other carbonate contaminants; (ii) 274 

organic (principally humic- and fulvic-) acid contaminants; and (iii) any dissolved atmospheric 275 

CO2 that might have been absorbed during the preceding base wash. In this way, any potential 276 

secondary carbon contamination is removed, leaving the samples pure for subsequent 277 

combustion, graphitisation and accelerator mass spectrometry (AMS) 14C dating. At the Oxford  278 

Radiocarbon Accelerator Unit (ORAU) ABA chemical pre-treatment of peat samples 279 

(laboratory pre-treatment code ‘VV’) involves successive 1 M HCl (20 mins, 80 °C), 0.2 M 280 

NaOH (20 mins, 80 °C) and 1 M HCl (1 hr, 80 °C) washes, with each stage followed by rinsing  281 

(≥3 times) with ultrapure MilliQ™ deionised water. From five samples, the base-soluble humic 282 

acid component extracted from the peat was additionally dated to provide supporting 283 
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information on the likely contribution of mobile- (presumably, downward-percolating     young-284 

) contaminant to the primary base-insoluble (‘humin’) component of the peat samples. 285 

Specifically, this involved the collection of the base-soluble fraction of these samples and 286 

reacidification through the addition of 1 M HCl, followed by centrifugation and rinsing (twice) 287 

with ultrapure MilliQ™ deionised water (ORAU laboratory pre-treatment code ‘HW’). AMS  288 

14C dating was subsequently performed on the 2.5 MV HVEE tandem AMS system at ORAU 289 

(Bronk Ramsey et al., 2004; Staff et al., 2014).  290 

  291 

  292 

3.2 Chronological modelling  293 

  294 

          The TP-2005 14C data were analysed with the Bayesian statistical software OxCal ver.  295 

4.3 (Bronk Ramsey, 2019), implementing a Poisson-process (‘P_Sequence’) deposition 296 

model (Bronk Ramsey, 2008). The P_Sequence model takes into account the complexity 297 

(randomness) of the underlying peat accumulation process, and thus provides the most realistic 298 

age-depth model for the TP-2005 peat profile on the calibrated radiocarbon timescale. For 299 

comparison purposes, we herein modelled our TP-2005 14C data on to both the recently 300 

published Hulu Cave dataset of Cheng et al. (2018), as well as the current consensus (IntCal) 301 

calibration curve (Reimer et al., 2013). The rigidity of each P_Sequence (i.e., the regularity 302 

of the peat accumulation rate) is determined iteratively within OxCal through a model 303 

averaging approach, based upon the likelihood (i.e., calibrated 14C) data included within the 304 

model (Bronk Ramsey and Lee, 2013). ‘Boundary’ functions were applied at the top and 305 

bottom of the ‘P_Sequence’ (at 12.87 m and 14.80 m core depth, respectively) – the former 306 

providing a modelled, 14C-derived age for the C.I. tephra. Objective outlier analysis was applied 307 

to down-weight any statistically anomalous data points (Bronk Ramsey, 2009; Bronk  308 
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Ramsey et al., 2010). An ‘r-type’ Outlier_Model was selected, allowing for short-term 309 

fluctuations in the 14C concentrations between the respective radiocarbon reservoirs of the  310 

Tenaghi Philippon, Hulu Cave and IntCal13 datasets. (N.b., a premise of this paper is that the  311 

IntCal and Hulu Cave curves currently smooth out real, higher frequency ‘wiggles’ in 312 

atmospheric radiocarbon concentration, 14C – i.e., that the datasets have short-term offsets in 313 

their apparent 14C concentrations compared to the TP-2005 record – which is allowed for by 314 

the r-type Outlier_Model.) A prior ‘Outlier’ probability of 5% was applied to all of the 315 

TP-2005 14C determinations, since there was no reason, a priori, to believe that any samples 316 

were more likely to be statistical outliers than others. As noted, both the Hulu Cave (Cheng et 317 

al., 2018) and IntCal13 14C calibration curve (Reimer et al., 2013) were used, with alternative 318 

comparison datasets from Lake Suigetsu (Bronk Ramsey et al, 2012), Bahamas speleothem 319 

(Hoffmann et al., 2010), and Cariaco Basin foraminifera (Hughen et al., 2006) plotted for 320 

comparison purposes only. The coding of these primary deposition models and the model 321 

output are given in the Supplementary Material (S1 and Tables S3 and S4).  322 

          Similar Poisson-process modelling was applied to the original TP-2005 14C 323 

determinations of Müller et al. (2011), using two successive P_Sequences for the lower and 324 

upper core sections, cross-referencing the upper Boundary of the lower P_Sequence 325 

(12.87m core depth; the lower contact of the C.I. tephra) to equal the lower Boundary of the 326 

upper P_Sequence (12.64m core depth; the upper contact of the C.I. tephra). Again, the 327 

model coding is given in the Supplementary Material (S2).  328 

          One consideration with the P_Sequence deposition model is that it produces an 329 

inevitable attenuation of the authentic 1C maxima and minima by ‘pulling’ the data to more 330 

                                                 

1 C production rates using the production rate model of Herbst et al. (2017) and the Local 

Interstellar Spectrum of Potgieter et al. (2014), assuming a constant solar modulation potential 
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closely fit the Hulu Cave or IntCal calibration datasets. Therefore, supporting age-depth models 331 

were subsequently generated in OxCal, simply applying a uniform (‘U_Sequence’) 332 

deposition model (Bronk Ramsey, 2008), rather than the P_Sequence. The coding of these 333 

supporting deposition models is also given in the Supplementary Material (S3), as is the model 334 

output (Tables S3 and S4). In reality, the two differing model assumptions (P_Sequence or 335 

U_Sequence) produce similar output (Figs. S1 and S2), reflecting the insensitivity of our 336 

conclusions presented herein to the choice of chronological model construction.  337 

  338 

  339 

3.3. 14C modelling from GRIP 10Be fluxes and Black Sea and GLOPIS-75 VADM  340 

  341 

GRIP 10Be fluxes (Yiou et al., 1997; Muscheler et al., 2004) and estimates of the Earth’s virtual 342 

axial dipole moment (VADM) from both the individual Black Sea record (Nowaczyk et al., 343 

2012, 2013) and the GLOPIS-75 stack (Laj et al., 2004, 2014) were converted into 14C using 344 

previously applied methods (Muscheler et al., 2004, 2005). First, VADM was converted into 345 

(~300‰ between 48,000 and 40,000 cal.BP), we ran the carbon cycle model with slightly 346 

reduced ocean diffusivity (70% of the preindustrial value, resembling reduced ocean ventilation 347 

                                                 

of 800 MeV that resembles the modern average solar activity (Muscheler et al., 2016). In a 

second step, 14C was modelled from GRIP 10Be fluxes and VADM-based 14C production rates 

using a box-diffusion carbon cycle model (Siegenthaler et al., 1980; Muscheler et al., 2004). 

We assume a 10Be/14C production rate ratio of 1:1 which is in agreement with 10Be/14C 

comparisons from the Holocene (Adolphi and Muscheler, 2016) as well as production rate 

models (Herbst et al., 2017). To match the amplitude of the overall 14C increase in IntCal  
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in the Glacial) and reduced air/sea exchange rates (75% of the preindustrial value, resembling 348 

increased sea ice extent). Note, that this only affects the overall amplitude of the modelled 14C 349 

change, but not the shape of the curve, since these parameters were kept constant over the entire 350 

timeframe.  351 

  352 

  353 

4. Results  354 

  355 

          Our 54 new 14C determinations from TP-2005 are presented in Table S2 and, having been 356 

modelled against both the Hulu Cave dataset and IntCal13 (see section 3.2, above), are plotted 357 

against depth in Fig. 2. These new data suggest that the previous 14C-based chronology of 358 

Müller et al. (2011) underestimated the true age of the peat sequence for the time period before 359 

circa 39,000 cal. BP; this may be due to insufficient chemical pre-treatment to remove 360 

(young/modern) contaminant carbon, which has an increasing influence on 14C measurements 361 

with increasing age.   362 

          The inferred 14C values from our new TP-2005 data show three periods of increasing 363 

14C values (Fig. 3). On the Hulu Cave U-series timescale these successive increases occur 364 

from circa 47,300 cal. BP to 45,600 cal. BP, reaching a maximum of approximately 450‰; 365 

from circa 44,900 cal. BP to 43,700 cal. BP, reaching a maximum of approximately 400‰; 366 

and from circa 43,200 cal. BP to 42,000 cal. BP, reaching a maximum of approximately 650‰. 367 

This final elevation represents the peak of the Laschamp geomagnetic excursion in TP-2005, 368 

and continues until at least the timing of the Campanian Ignimbrite (C.I.) tephra, dated to circa 369 

39,600 cal. BP (Fig. 4), interrupted by a(t least one) depression in 14C values between circa 370 

41,000 and 40,400 cal. BP.  371 

  372 
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  373 

5. Discussion  374 

  375 

          An initial observation is that our new TP-2005 data provide no evidence for the extremely 376 

high 14C values associated with the Laschamp geomagnetic excursion that have been 377 

suggested by some previous studies (e.g. Voelker et al., 2000; Hughen et al., 2006; Hajdas et 378 

al., 2011). There are also no data identified as being statistical outliers (Bronk Ramsey, 2009; 379 

Bronk Ramsey et al., 2010), demonstrating the integrity of the peat sequence both for 380 

reconstructing past variation in 14C as well as for palaeoenvironmental research. We note that 381 

the age-depth profile for TP-2005 is more linear (especially at the younger end) when modelled 382 

on to the Hulu Cave dataset rather than the IntCal13 curve (Fig. 2), which implies greater 383 

congruence of the TP-2005 14C data with the Hulu Cave record (Cheng et al., 2018) rather than 384 

IntCal13 (Reimer et al., 2013).  385 

          Our new data (Fig. 3) show higher frequency 14C variability than the ‘smoothed’ 386 

IntCal13 curve, which inevitably loses authentic signal when the contributing 14C datasets are 387 

averaged into the consensus curve (Reimer et al., 2013; Fig. S4). The 14C data from the two 388 

individual, non-reservoir corrected atmospheric 14C datasets (TP-2005 and Lake Suigetsu) 389 

match each other within the bounds of statistical uncertainty. The Lake Suigetsu dataset shows 390 

higher frequency variability, however. One reason for this is the ~150 year smoothing of the 391 

TP-2005 data (due to the contiguous sub-sampling methodology applied), as compared to the 392 

annual signal contained within the individual Japanese terrestrial plant macrofossil samples.  393 

The other reason is the statistical ‘noise’ in the Lake Suigetsu data, which is the result of the 394 

methodological problems of dating very small individual plant macrofossil samples so close to 395 

the limit of 14C detection (Muscheler et al., 2014b). For this latter reason, we prefer the TP2005 396 

dataset (as compared to the Lake Suigetsu record) as more reliably representing the authentic 397 
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signal in past variability of atmospheric radiocarbon concentration for this earliest portion of 398 

the 14C time frame. We also reiterate that our TP-2005 data demonstrate a direct atmospheric 399 

signal, therefore avoiding the additional uncertainties associated with the reservoir effects of 400 

either the marine or speleothem datasets. The tripartite structure seen in the Tenaghi Philippon 401 

data also demonstrates higher amplitude shifts in the build-up to the principal Laschamp peak 402 

than the Hulu Cave dataset. As noted above (section 1.3), we suggest that this attenuation in 403 

the Hulu Cave record is the result of the longer ~450 year smoothing effect of the soil reservoir 404 

effect at the site.  405 

          However, since the TP-2005 data have necessarily been modelled on to the Hulu Cave 406 

and IntCal13 timescales (see section 3.2), such errors currently contained within these 407 

calibration datasets will propagate through into the placement of our TP-2005 data in calendar 408 

time and hence on the amplitude of the reconstructed 14C. That said, the general shape of the 409 

14C data will be largely unaffected by this process and, consequently, we can compare TP2005 410 

14C to the equivalent signal inferred from Greenland 10Be to assess the concordance (or lack 411 

thereof) between the underlying Hulu Cave (U-series), IntCal, and Greenland ice-core 412 

(GICC05) timescales themselves.  413 

          Significantly, the general shape of the TP-2005 14C data, consisting of three successive 414 

rises in atmospheric 14C concentration in the ~6,000 years leading up to the peak values 415 

associated with the Laschamp geomagnetic excursion (from circa 42,000 cal. BP in the TP2005 416 

record), broadly tracks equivalent increases calculated from 10Be flux measured in the  417 

GRIP ice-core (Yiou et al., 1997; Muscheler et al., 2004, 2014b) (Fig. 3). This is the first time 418 

that this clear, tripartite structure in 14C has been directly observed in the build-up to the 419 

Laschamp excursion.  420 
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          We can additionally compare our record with estimates of the Earth’s dipole moment 421 

(virtual axial dipole moment, VADM) obtained from relative palaeointensity studies, to 422 

provide assessment of the role of the geomagnetic field in contributing to cosmogenic 423 

radionuclide production. To this end, we utilise both the Black Sea sediment record of 424 

Nowaczyk et al. (2013), drilled ~1000 km East of Tenaghi Philippon, as well as the GLOPIS75 425 

globally-averaged curve (Laj et al., 2004, 2014). The Black Sea dataset is not truly independent, 426 

in that it has been tuned to the GICC05 timescale using palaeoenvironmental proxy data from 427 

the two archives (Nowaczyk et al., 2012). Likewise, the GLOPIS-75 dataset is composed of 428 

records aligned on to a single timescale (Laj et al., 2004, 2014). However, the inferred 14C 429 

from both of these records closely mimics the variations evident in the Greenland 10Be-inferred 430 

14C in both structure and amplitude, and also shares similar characteristics with the TP-2005 431 

14C data from Tenaghi Philippon (Fig. 3).  432 

          Despite this general coherence in the 14C, 10Be, and palaeomagnetic intensity records, 433 

there are also distinct differences evident. Firstly, the amplitude of the successive 14C 434 

increases is vastly different in the 10Be and VADM-inferred data, as compared to the TP-2005 435 

dataset. And, whilst 10Be and VADM indicate that the first two 14C increases are about a 436 

factor of three smaller than the final rise circa 42,500 to 40,000 cal. BP, the initial two 14C 437 

maxima in TP-2005 (as modelled on to the Hulu Cave dataset) are approximately 2⁄3 the 438 

amplitude of the final Laschamp peak (Fig. 3d). When instead modelled on to IntCal13 (Fig. 439 

3e), the TP-2005 data show a comparable magnitude 14C increase for all three steps, which 440 

clearly accords less well with the 10Be and VADM-inferred signals. This is another line of 441 

argument in support of the Hulu Cave dataset as providing the more accurate 14C record 442 

through this time interval compared to the current consensus calibration curve (IntCal13).  443 



20.  

  

          In terms of timing, the earliest 14C maximum (circa 45,600 cal. BP) in TP-2005, as 444 

modelled on to the Hulu Cave U-series timescale, is represented by concomitant increases in 445 

both the Greenland 10Be and Black Sea palaeointensity-inferred 14C records. However, the 446 

second 14C maximum (circa 46,000 43,700 cal. BP) does not demonstrate such a correlation 447 

to the 10Be or VADM-inferred records. Conversely, the third and final increase in TP-2005 448 

14C to the principal Laschamp peak does appear similar in structure to the 10Be and 449 

VADMinferred records, with an interruption to the rising 14C trend circa 42,800 cal. BP 450 

evident in all of the records, before a resumption of increasing values up to the principal 451 

Laschamp production maximum. Again, we see a better fit of our TP-2005 data against these 452 

alternative 10Be and palaeointensity-inferred 14C records when modelled on to the Hulu Cave 453 

dataset rather than IntCal13 (Fig. 3). This is likely due to the IntCal13 curve containing 454 

incorrect structure, particularly around the timing of the principal Laschamp peak itself. This 455 

is unsurprising since the constituent datasets of IntCal13 are themselves in disagreement at this 456 

time (Fig. S4). It would appear that the DCF of the independently U-series dated Bahamas 457 

speleothem record (Hoffmann et al., 2010) is being over-corrected at this time. Conversely, the 458 

14C of the Cariaco Basin dataset (Hughen et al., 2006) appears too high, and it is likely that 459 

errors in either the marine reservoir correction or, more likely, the climatically wiggle-matched 460 

timescale of this latter record is responsible for the erroneous structure in IntCal at this time.  461 

          As noted above, the second maximum in the TP-2005 14C data circa 43,700 cal. BP is 462 

not represented by equivalent signal in the 10Be or VADM-inferred datasets. We therefore 463 

hypothesise that the signal evident in the direct (TP-2005) 14C record at this time is the result 464 

of processes internal to the global carbon cycle. We note that, as with all such radiocarbon 465 

calibration datasets, firm conclusions should not be drawn until corroboration is provided from 466 

further archives. Such support is provided for the subsequent 14C minimum, however, with 467 
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an equivalent minimum seen in the New Zealand kauri record of Turney et al. (2010; which 468 

was also utilised by Muscheler et al. 2014b) when that record is also modelled on to the Hulu 469 

Cave dataset. Interestingly, a similar interruption to the longer-term 14C increase to the 470 

principal Laschamp 14C maximum is also seen in both the TP-2005 and kauri records circa 471 

42,800 cal BP, providing further corroboration for the authenticity of this signal.  472 

          One further difference between the structure of the TP-2005 and Greenland 10Be-inferred 473 

14C occurs in the aftermath of the principal Laschamp peak. Whereas the 10Be data show a 474 

steady decline from circa 41,000 to 39,000 cal. BP, the TP-2005 14C data exhibit an initial, 475 

equivalent decline (which is not seen in the Hulu Cave or IntCal13 datasets; Fig. S4), but then 476 

return to higher 14C values again at around 40,200 cal. BP. Similar structure is hinted at in the 477 

Lake Suigetsu record; however, it remains unclear as to how much of the higher frequency 478 

signal in the Suigetsu record is genuine and how much is noise. The lack of a comparable signal 479 

in the 10Be flux suggests that, if genuine, this 14C signal would also be related to processes 480 

internal to Earth’s carbon cycle. Even more speculatively, we note the approximate coincidence 481 

of this return to higher 14C with Heinrich Stadial 4, during which the Atlantic Meridional 482 

Overturning Circulation (AMOC) is believed to have been significantly reduced in strength 483 

(Böhm et al., 2015; Eggleston et al., 2016). The AMOC reduction would have less efficiently 484 

removed relatively 14C-enriched CO2 from the atmosphere and less efficiently returned 485 

relatively 14C-depleted CO2 from the deep ocean. Therefore, there is a theoretical expectation 486 

that 14C would increase at about this time, which would not be seen in the 10Be and 487 

VADMinferred records. The afore-mentioned period of divergence in 14C and 10Be circa 488 

43,800 cal.  489 
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BP does not coincide with a Heinrich Stadial, but it does coincide with a ‘non-Heinrich’ Stadial 490 

(Greenland Stadial 12), which we again speculate as being related to the signal seen in TP2005 491 

14C.  492 

          With regard to the alignment of the palaeointensity and TP-2005 14C signals, the Black  493 

Sea and Tenaghi Philippon datasets can be unambiguously synchronised at the younger end of 494 

the TP-2005 data via the presence of the C.I. isochron in both records. Our TP-2005 14C-derived 495 

age of 39,556 ± 310 cal. BP for the C.I. (as modelled on to the Hulu Cave timescale; 496 

39,87739,165 cal. BP, 95.4% highest probability density range; Fig. S5) is within statistical 497 

agreement  498 

(at 95.4% confidence) with the GICC05-implied age in the Black Sea record of 39,350 years  499 

BP (Nowaczyk et al. 2012, 2013), providing additional support for the alignment of our TP2005 500 

dataset with the Black Sea record at this point in time. We further note the statistical agreement 501 

between our TP-2005 inferred age for the C.I. (at 95.4% confidence) with both the widely 502 

quoted 40Ar/39Ar age of 39,230 ± 110 years BP (2 ) presented by De Vivo et al. (2001) and the 503 

more recently published 40Ar/39Ar age of 39,850 ± 140 years BP (2 ) given by Giaccio et al. 504 

(2017), noting that our TP-2005 inferred age falls centrally between these two 40Ar/39Ar age 505 

estimates. Significantly, our TP-2005 inferred age for the C.I. on the IntCal13 timescale  506 

(38,725 ± 239 cal. BP; Fig. S5) is too young compared to these alternative age estimates (by 507 

~1,100 years as compared to the Giaccio et al. 2017 40Ar/39Ar age). This provides further 508 

support for the key finding above that IntCal13 is not accurate circa 40,000 years ago, and that 509 

the Hulu Cave speleothem provides a better representation of the authentic radiocarbon 510 

calibration curve at this point in time.   511 

  512 

  513 
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6. Conclusions  514 

  515 

          We have presented a record of atmospheric radiocarbon concentration ( 14C) from 516 

Tenaghi Philippon core TP-2005 that provides a unique, continuous and direct (non-reservoir 517 

corrected) record of 14C for the earliest ~10,000 years of the 14C dating method. Our data 518 

demonstrate higher frequency variability than the smoothed IntCal13 consensus calibration 519 

curve (Reimer et al., 2013) or the recently published Hulu Cave speleothem dataset (Cheng et 520 

al. 2018), yet lack the noise of the Lake Suigetsu dataset (Bronk Ramsey et al., 2012) or the 521 

additional reservoir uncertainties of the marine (Fairbanks et al., 2005; Hughen et al., 2006) 522 

and speleothem (Hoffmann et al., 2010; Cheng et al. 2018) datasets. Thus, we have been able 523 

to compare 14C with the shared cosmogenic production signal of 10Be in the Greenland ice 524 

cores and direct palaeo-magnetic intensity records from the Black Sea (Nowaczyk et al., 2013) 525 

and the GLOPIS-75 stack (Laj et al., 2004, 2014). These datasets demonstrate a similar pattern 526 

in the build up to and through the principal peak of the Laschamp geomagnetic excursion. By 527 

placing our 14C dataset on to both the Hulu Cave U-series and IntCal13 timescales via Bayesian 528 

statistical modelling, the comparison of our TP-2005 14C dataset with these alternative records 529 

also implicitly relates the underlying U-series, IntCal13 and GICC05 timescales themselves. 530 

We suggest that, whilst the timescales are in broad agreement, the TP-2005 14C data match 531 

the Greenland 10Be-inferred data more closely when modelled on to the Hulu Cave dataset 532 

rather than the IntCal13 curve. This suggests that there is erroneous structure currently included 533 

within the IntCal curve, which will be significantly improved upon with the addition of the 534 

Hulu Cave dataset to the upcoming iteration of the IntCal calibration curve. It is unsurprising 535 

that we would find erroneous structure within IntCal13 given that the underlying, contributing 536 

14C datasets to IntCal are themselves in significant disagreement with each other at this time, 537 

and we deem it most likely that the main error is incorporated from the climatically 538 
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wigglematched timescale of the Cariaco Basin dataset. Our TP-2005 data also suggest that there 539 

is missing structure from the smoothed IntCal and Hulu Cave curves between circa 47,000 cal. 540 

BP and 43,000 cal. BP. Thus, we provide a revised approximation of the authentic structure of 541 

the radiocarbon calibration curve for the earliest ~10,000 years of the 14C dating method, which  542 

will have implications for all users of the technique over this time period.    543 
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Project ice core at Summit, Greenland. J Geophys Res 102:26783-26794.    861 

Figure Captions:  862 

  863 

Fig. 1. Location of the Tenaghi Philippon site, Eastern Macedonia, NE Greece. Inset shows the 864 

location of sediment core TP-2005 within the Drama Basin.  865 

 866 

  867 

Fig. 2. Revised age-depth profile (green) for core TP-2005 from Tenaghi Philippon, as 868 

compared to the previously published dataset of Müller et al. (2011; red), generated by 869 

independent P_Sequence deposition modelling in OxCal ver.4.3 (Bronk Ramsey, 2008, 870 

2019; Bronk Ramsey and Lee, 2013) on to the Hulu Cave 14C calibration dataset of Cheng et 871 

al. (2018). Equivalent age-depth profiles are additionally plotted for the same TP-2005 datasets  872 

(this study, blue; and Müller et al., 2011, grey) as modelled on to the IntCal13 calibration curve 873 

(Reimer et al., 2013). Modelled probability density functions are plotted with the 68.2% highest 874 

probability density range interpolations overlain. For the unmodelled data, see Supplementary 875 

Figure S3.   876 
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 878 

Fig. 3. Comparison of the shared production signals of the cosmogenic nuclides 14C and 10Be 879 

with relative palaeointensity. (a) NGRIP 18O (NGRIP members, 2004; light blue data series);  880 



39.  

  

(b) Inferred 14C from the GLOPIS-75 stack (Laj et al., 2004, 2014; blue data series) and Black 881 

Sea (Nowaczyk et al., 2013; as ‘tuned’ to GICC05, red data series) relative palaeointensity 882 

datasets; (c) Inferred 14C from Greenland 10Be flux (Yiou et al., 1997; Muscheler et al., 2004, 883 

2014b); (d) Reconstructed atmospheric 14C concentrations ( 14C) based on Tenaghi Philippon 884 

core TP-2005 (dark green data points; this paper), as well as the kauri dataset of Turney et al. 885 

(2010; purple data series), as modelled against the Hulu Cave 14C calibration dataset (Cheng et 886 

al., 2018; pink curve); (e) Reconstructed atmospheric 14C concentrations ( 14C) based on  887 

Tenaghi Philippon core TP-2005 (dark green data points; this paper) as modelled against 888 

IntCal13 (red curve). For comparison, the Lake Suigetsu (Bronk Ramsey et al., 2012) (blue 889 

dataset) is additionally plotted. For clarity, all data are plotted at 68.2%/1  probability ranges.  890 

(a-c) are all plotted on the GICC05 timescale BP (Andersen et al., 2006; Rasmussen et al., 891 

2006; Svensson et al., 2008); (d) is plotted on the Hulu Cave U-series timescale; and (e) is 892 

plotted on the IntCal13 cal. BP timescale. Additionally, the shaded light blue boxes mark the 893 

approximate timings of Heinrich stadials HS4 and HS5 (Sanchez Goñi and Harrison, 2010); 894 

the hashed brown line marks the position of the Campanian Ignimbrite (C.I.) tephra in the  895 

Tenaghi Philippon and Black Sea records.  896 
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