54 research outputs found

    Questioning the catalytic effect of Ni nanoparticles on CO2 hydration and the very need of such catalysis for CO2 capture by mineralization from aqueous solution

    Get PDF
    © 2017 Elsevier Ltd Recent publications claimed a significant catalytic effect of nickel nanoparticles on the hydration of CO 2 to carbonic acid. Others have claimed that such catalysis can significantly accelerate the overall process of CO 2 capture by mineralization to CaCO 3 from aqueous solution. Having repeated the experiments as closely as possible, we observed no catalytic effect of Ni nanoparticles. Numerical modelling revealed that hydration is not the slowest reaction in the chain ending with mineralization; hence its catalysis cannot have a significant effect on CaCO 3 formation

    Percolation and jamming in random sequential adsorption of linear segments on square lattice

    Full text link
    We present the results of study of random sequential adsorption of linear segments (needles) on sites of a square lattice. We show that the percolation threshold is a nonmonotonic function of the length of the adsorbed needle, showing a minimum for a certain length of the needles, while the jamming threshold decreases to a constant with a power law. The ratio of the two thresholds is also nonmonotonic and it remains constant only in a restricted range of the needles length. We determine the values of the correlation length exponent for percolation, jamming and their ratio

    Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

    Get PDF
    Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage in a random sequential adsorption (RSA) of self-avoiding walk (SAW) chains for up to 10^{12} time steps on a square lattice. For the first time, the true jamming coverage (theta_J) is found to decay with the chain length (N) with a power-law theta_J propto N^{-0.1}. The growth of the coverage to its jamming limit can be described by a power-law, theta(t) approx theta_J -c/t^y with an effective exponent y which depends on the chain length, i.e., y = 0.50 for N=4 to y = 0.07 for N=30 with y -> 0 in the asymptotic limit N -> infinity.Comment: RevTeX, 5 pages inclduing figure

    Jamming coverage in competitive random sequential adsorption of binary mixture

    Full text link
    We propose a generalized car parking problem where cars of two different sizes are sequentially parked on a line with a given probability qq. The free parameter qq interpolates between the classical car parking problem of only one car size and the competitive random sequential adsorption (CRSA) of a binary mixture. We give an exact solution to the CRSA rate equations and find that the final coverage, the jamming limit, of the line is always larger for a binary mixture than for the uni-sized case. The analytical results are in good agreement with our direct numerical simulations of the problem.Comment: 4 pages 2-column RevTeX, Four figures, (there was an error in the previous version. We replaced it (including figures) with corrected and improved version that lead to new results and conclusions

    On the fluctuations of jamming coverage upon random sequential adsorption on homogeneous and heterogeneous media

    Full text link
    The fluctuations of the jamming coverage upon Random Sequential Adsorption (RSA) are studied using both analytical and numerical techniques. Our main result shows that these fluctuations (characterized by σθJ\sigma_{\theta_J}) decay with the lattice size according to the power-law σθJL1/ν\sigma_{\theta_J} \propto L^{-1/ \nu}. The exponent ν\nu depends on the dimensionality DD of the substrate and the fractal dimension of the set where the RSA process actually takes place (dfd_f) according to ν=2/(2Ddf)\nu = 2 / (2D - d_f).This theoretical result is confirmed by means of extensive numerical simulations applied to the RSA of dimers on homogeneous and stochastic fractal substrates. Furthermore, our predictions are in excellent agreement with different previous numerical results. It is also shown that, studying correlated stochastic processes, one can define various fluctuating quantities designed to capture either the underlying physics of individual processes or that of the whole system. So, subtle differences in the definitions may lead to dramatically different physical interpretations of the results. Here, this statement is demonstrated for the case of RSA of dimers on binary alloys.Comment: 20 pages, 8 figure

    Staphylococcus aureus resists UVA at low irradiance but succumbs in the presence of TiO2 photocatalytic coatings

    Get PDF
    The aim of this study was to evaluate the bactericidal effect of reactive oxygen species (ROS) generated upon irradiation of photocatalytic TiO2 surface coatings using low levels of UVA and the consequent killing of Staphylococcus aureus. The role of intracellular enzymes catalase and superoxide dismutase in protecting the bacteria was investigated using mutant strains. Differences were observed in the intracellular oxidative stress response and viability of S. aureus upon exposure to UVA; these were found to be dependent on the level of irradiance and not the total UVA dose. The wild type bacteria were able to survive almost indefinitely in the absence of the coatings at low UVA irradiance (LI, 1 mW/cm2), whereas in the presence of TiO2 coatings, no viable bacteria were measurable after 24 h of exposure. At LI, the lethality of the photocatalytic effect due to the TiO2 surface coatings was correlated with high intracellular oxidative stress levels. The wild type strain was found to be more resistant to UVA at HI compared with an identical dose at LI in the presence of the TiO2 coatings. The UVA-irradiated titania operates by a “stealth” mechanism at low UVA irradiance, generating low levels of extracellular lethal ROS against which the bacteria are defenceless because the low light level fails to induce the oxidative stress defence mechanism of the bacteria. These results are encouraging for the deployment of antibacterial titania surface coatings wherever it is desirable to reduce the environmental bacterial burden under typical indoor lighting conditions

    Model of correlated sequential adsorption of colloidal particles

    Get PDF
    We present results of a new model of sequential adsorption in which the adsorbing particles are correlated with the particles attached to the substrate. The strength of the correlations is measured by a tunable parameter σ\sigma. The model interpolates between free ballistic adsorption in the limit σ\sigma\to\infty and a strongly correlated phase, appearing for σ0\sigma\to0 and characterized by the emergence of highly ordered structures. The phenomenon is manifested through the analysis of several magnitudes, as the jamming limit and the particle-particle correlation function. The effect of correlations in one dimension manifests in the increased tendency to particle chaining in the substrate. In two dimensions the correlations induce a percolation transition, in which a spanning cluster of connected particles appears at a certain critical value σc\sigma_c. Our study could be applicable to more general situations in which the coupling between correlations and disorder is relevant, as for example, in the presence of strong interparticle interactions.Comment: 6 pages, 8 EPS figures. Phys. Rev. E (in press
    corecore